
AS 5002 Star Formation & Plasma Astrophysics

The spin-up timescale� Stellar moment of inertia:� Accretion torque
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Squared radius of gyration ~ 0.2 
for fully convective protostar

Ignore if spin-up time
less than contraction time.
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Typically 10� 5 to 10 � 7 MSun y
� 1 for 

classical T Tauri stars (CTTS) from Ldisc.

t s
� 2 � 104 � 2 � 106 yr
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The contraction timescale

� Gravitational contraction timescale is roughly:

tG ≈ GM2

R*
. 1
4πR*

2σT 4
(about 1 to 2 Myr
for a 1 MSun protostar
with R = 4 RSun and 
T = 4500 K.)� i.e. ts �  tG ~tvisc.� Plenty of time to spin up as disc material accretes 

on to star and star contracts.� So why do real CTTS spin ten times more slowly 
than breakup???
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Rotation period vs. IR excess

1day 10days

i.e. stars with discs 
rotate more slowly
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Discs and rotation� Bouvier 1993, Attridge & Herbst (1992) find that T Tauri 
stars with IR and sub-mm emission from discs rotate 
significantly more slowly than those without discs.� Ditto Edwards et al 1993, AJ 106, 372� �Does the presence of a disc alter a star s early rotational 
evolution?� Königl (1991, ApJ) suggested that magnetic drag on disc 
material might regulate the stellar spin rate.
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Disc brakes?
Cameron & Campbell (1993,1994) showed that a TTS can evolve 
into magnetic torque balance with its disc, within its Hayashi-
track lifetime. 

The equilibrium spin rate is about 1/10 the breakup rate, as 
observed.

Field lines dragged back
by slowly orbiting disc 
material outside corotation 
radius

Field lines dragged 
forward by rapidly 
orbiting disc material inside 
corotation radius.
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Disc-magnetosphere interaction� Dynamo generated field anchored in photosphere.� Magnetosphere corotates with star.� Disc cuts into magnetosphere.� Field lines penetrate disc vertically:� For dipole field:

� Azimuthal field component:� Growth due to vertical shear in uφ� Limited by reconnection of twisted field lines in magnetosphere?� Simple prescription:
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Azimuthal Lorentz force� Local Lorentz force
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� Azimuthal tension component:
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BR=0 Axisymmetric

� Integrate to define force per unit area:
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Vertical 
average

Disc has
two sides!
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Magnetic torque on disc material� Annulus of width ∆R feels torque:
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� Diffusion equation for surface density becomes:

Azimuthal
force/area 

Area of 
annulus

Length of 
moment arm
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Magnetic torque on star� Disc disrupted at magnetospheric radius Rm � Integrate magnetic torque from Rm to infinity: 

Tmag = 4πB0
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� Get magnetic spin-down torque on star if: 

Rc ≡ GM*
Ω*
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� Differential accretion torque across annulus of 
width dR at radius R is:

� Disc disrupted at Rm where magnetic stresses 
exceed viscous stresses: 

The disruption radius Rm
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