The spin-up timescale

- Stellar moment of inertia: $\quad I=k^{2} M_{*} R_{*}^{2}$

Act Squared radius of gyration ~0.2 $C=\frac{d}{d t}(I \Omega)=I \frac{d \Omega}{d t}+\Omega \frac{d I}{d t}=\dot{M}\left(G M_{*} R_{*}\right)^{1 / 2}$ Ignore if spin-up time
less than contraction time.

$$
\begin{aligned}
& \text { - Spin-up timescale } \\
& \qquad \begin{aligned}
& t_{s} \approx \frac{I \Omega_{K}\left(R_{*}\right)}{\dot{M}\left(G M R_{*}\right)^{1 / 2}}=\frac{k^{2} M R_{*}^{2}}{\dot{M}\left(G M R_{*}\right)^{1 / 2}} \cdot\left(\frac{G M}{R_{*}^{3}}\right)^{1 / 2} \\
&=k^{2} \frac{M}{\dot{M}} \quad \begin{array}{l}
\begin{array}{l}
\text { Typically } 10^{-5} \text { to } 10^{-7} \mathrm{M}_{\text {sum }}{ }^{1} \text { for } \\
\text { classical T Tauri stars (CTS) from } \mathrm{L}_{\text {disce }}
\end{array} \\
t_{s}
\end{array} \approx 2 \times 10^{4}-2 \times 10^{6} y r
\end{aligned}
\end{aligned}
$$

AS 5002
Star Formation \& Plasma Astrophysics

Rotation period vs. IR excess

AS 5002

The contraction timescale

- Gravitational contraction timescale is roughly:

$$
t_{G} \approx \frac{G M^{2}}{R_{*}} \cdot \frac{1}{4 \pi R_{*}^{2} \sigma T^{4}} \quad \begin{aligned}
& \text { (about } 1 \text { to } 2 \text { Myr } \\
& \text { for a } 1 M_{\text {sun }} \text { protostar } \\
& \text { with } \mathrm{R}=4 \mathrm{R}_{\text {sun }} \text { and } \\
& \mathrm{T}=4500 \mathrm{~K} \text {.) }
\end{aligned}
$$

- i.e. $t_{s} \leq t_{G} \sim t_{\text {visc }}$.
- Plenty of time to spin up as disc material accretes on to star and star contracts.
- So why do real CTTS spin ten times more slowly than breakup???

Discs and rotation

- Bouvier 1993, Attridge \& Herbst (1992) find that T Tauri stars with IR and sub-mm emission from discs rotate significantly more slowly than those without discs.
- Ditto Edwards et al 1993, AJ 106, 372
- Does the presence of a disc alter a star's early rotational evolution?
- Königl (1991, ApJ) suggested that magnetic drag on disc material might regulate the stellar spin rate.

Disc-magnetosphere interaction

- Dynamo generated field anchored in photosphere.
- Magnetosphere corotates with star.
- Disc cuts into magnetosphere.
- Field lines penetrate disc vertically:
- For dipole field:

$$
\underset{z}{B_{z}=B_{0}}\left(\frac{R}{R_{*}}\right)^{-3}
$$

- Growth due to vertical shear in $\mathrm{u}_{\text {o }}$
- Limited by reconnection of twisted field lines in magnetosphere?
- Simple prescription:
$\underset{\substack{\text { Vertical } \\ \text { average }}}{ } \quad B_{\phi}=B_{z} \frac{\left(\Omega_{K}(R)-\Omega_{*}\right)}{\Omega_{K}(R)}$
Star Formation \& Plasma Astrophysics

Azimuthal Lorentz force

- Local Lorentz force

$$
\frac{1}{\mu_{0}}(\nabla \times \boldsymbol{B}) \times \boldsymbol{B}=\frac{1}{\mu_{0}}(\boldsymbol{B} \cdot \nabla) \boldsymbol{B}-\nabla\left(\frac{B^{2}}{2 \mu_{0}}\right)
$$

- Azimuthal tension component:
$\frac{1}{\mu_{0}}[(\boldsymbol{B} \cdot \nabla) \boldsymbol{B}]_{\phi}=\frac{1}{\mu_{0}}\left\lfloor\frac{B_{R}}{R} \frac{\partial^{B_{\mathrm{R}}=0}}{\partial R} R B_{\phi}+\frac{B_{\phi}}{R} \frac{\partial B_{\phi}}{\partial \phi}+B_{z} \frac{\partial B_{\phi}}{\partial z}\right\rfloor$
- Azimuthal tension component:
$\frac{1}{\mu_{0}}[(\boldsymbol{B} \cdot \nabla) \boldsymbol{B}]_{\phi}=\frac{1}{\mu_{0}}\left\lfloor\frac{B_{R}}{R} \frac{\partial^{\mathrm{B}_{\mathrm{p}}=0}}{\partial R} R B_{\phi}+\frac{B_{\phi}}{R} \frac{\partial B_{\phi} /}{\partial \phi}+B_{z} \frac{\partial B_{\phi}}{\partial z}\right\rfloor$
- Integrate to define force per unit area:

$$
\underset{\text { two sides! }}{\substack{\text { Disc has } \\
\mu_{0}}} B_{z} \int_{z=0}^{\infty} \frac{\partial B_{\phi}(z)}{\partial z} d z \equiv \frac{2 B_{z} B_{\phi}}{\mu_{0}} \rightarrow \begin{gathered}
\text { Vertical } \\
\text { average }
\end{gathered}
$$

AS 5002

Magnetic torque on star

- Disc disrupted at magnetospheric radius R_{m}
- Integrate magnetic torque from R_{m} to infinity:

$$
\begin{aligned}
& \quad \begin{aligned}
& T_{\mathrm{mag}}=\frac{4 \pi B_{0}^{2}}{\mu_{0}} R_{*}^{6} \int_{R_{\mathrm{m}}}^{\infty} R^{-4}\left(1-\left(\frac{R_{\mathrm{c}}}{R}\right)^{-3 / 2}\right) d R \\
&=\frac{4 \pi B_{0}^{2}}{3 \mu_{0}} R_{*}^{6}\left(R_{\mathrm{m}}^{-3}-2 R_{\mathrm{c}}^{-3 / 2} R_{\mathrm{m}}^{-3 / 2}\right) \\
& \text { Co-rotation radius } \rightarrow R_{\mathrm{c}} \equiv\left(\frac{G M_{*}}{\Omega_{*}^{2}}\right)^{1 / 3}
\end{aligned} \\
& \text { - Get magnetic spin-down torque on star if: }
\end{aligned}
$$

$$
T_{\mathrm{mag}}<0, \Rightarrow\left(\frac{R_{\mathrm{m}}}{R_{\mathrm{c}}}\right)>2^{-2 / 3} \approx 0.63
$$

AS 5002

Magnetic torque on disc material

- Annulus of width $\Delta \mathbf{R}$ feels torque:

$$
G_{\mathrm{m}}=\frac{2 B_{z} B_{\phi}}{\mu_{0}} \cdot \frac{2 \pi R \Delta R}{\substack{\text { Azimuthal } \\
\text { force/area }}} \begin{gathered}
\text { Area of } \\
\text { annulus }
\end{gathered} \quad \frac{\begin{array}{c}
\text { Length of } \\
\text { moment arm }
\end{array}}{2 \pi} \Rightarrow \frac{\partial G_{\mathrm{m}}}{\partial R}=4 \pi R^{2} \frac{B_{z}^{2}}{\mu_{0}} \frac{\Omega-\Omega_{*}}{\Omega}
$$

- Diffusion equation for surface density becomes:

$$
\begin{aligned}
\frac{\partial \Sigma}{\partial t} & =\frac{3}{R} \frac{\partial}{\partial R}\left[R^{1 / 2} \frac{\partial}{\partial R}\left(v \Sigma R^{1 / 2}\right)\right] \\
& +\frac{1}{R} \frac{\partial}{\partial R}\left[\frac{\Omega-\Omega_{*}}{\Omega} \frac{4 B_{z}^{2} R^{5 / 2}}{\mu_{0}\left(G M_{*}\right)^{1 / 2}}\right]
\end{aligned}
$$

The disruption radius \mathbf{R}_{m}

- Differential accretion torque across annulus of width dR at radius R is:

$$
\frac{\partial G_{\mathrm{acc}}}{\partial R}=\dot{M} \frac{\partial}{\partial R}\left(R^{2} \Omega_{K}(R)\right)=\frac{\dot{M}}{2}\left(\frac{G M_{*}}{R}\right)^{1 / 2}
$$

- Disc disrupted at R_{m} where magnetic stresses

$$
\begin{aligned}
& \text { exceed viscous stresses: } \\
& \frac{\partial G_{\mathrm{acc}}}{\partial R}=\frac{\partial G_{\mathrm{m}}}{\partial R} \Rightarrow \frac{4 \pi B_{z}^{2}}{\mu_{0}} R_{\mathrm{m}}^{2} \frac{\Omega_{\mathrm{K}}\left(R_{\mathrm{m}}\right)-\Omega_{*}}{\Omega_{\mathrm{K}}\left(R_{\mathrm{m}}\right)}=\frac{\dot{M}}{2}\left(\frac{G M_{*}}{R_{\mathrm{m}}}\right)^{1 / 2} \\
& \Rightarrow\left(\frac{R_{\mathrm{m}}}{R_{\mathrm{c}}}\right)^{-7 / 2}-\left(\frac{R_{\mathrm{m}}}{R_{\mathrm{c}}}\right)^{-2}=\frac{\mu_{0} \dot{M}}{8 \pi} \frac{\left(G M_{*}\right)^{1 / 2}}{B_{0}^{2} R_{*}^{6}} R_{\mathrm{c}}^{7 / 2}
\end{aligned}
$$

