The angular momentum problem

• Uniform-density spherical cloud rotating at Ω:

$$H = I\Omega = \frac{2}{5}MR^{2}\Omega \qquad \text{Angular momentum}$$
$$T = \frac{1}{2}I\Omega^{2} = \frac{5H^{2}}{4MR^{2}} \qquad \text{Rotational KE}$$
$$V = -\frac{3GM^{2}}{5R} \qquad \text{Gravitational bindi}$$

e =

ravitational binding energy

Star Formation & Plasma Astrophysics

· Spherically symmetric collapse possible for initially small values of ratio:

$$\frac{2T}{V} = \frac{25 H^2}{6G M^3 R}$$

AS 5002

cylindrical radius r is:

$$d = \frac{\Omega_c^2 r^4}{Gm} = \frac{\Omega_c^2 R_c^4}{GM_c} \frac{x^4}{1 - (1 - x^2)^{3/2}}$$

Star Formation & Plasma Astrophysics

AS 5002

Central condensation and disc. Mass enclosed within distance d [in M_{Sun}]. d [AU] 0.006 Surface density of material in 0.004 disc at distance d [in M_{Sun}(AU)-2]. 0.002 d [AU] 0.8 0.4 Specific angular momentum of material in disc at distance d [in units of $R^2\Omega = 2.58 \times 10^{16} \text{ m}^2\text{s}^{-1}$]. 0.4 0.3 d [AU] Star Formation & Plasma Astrophysics

AS 5002

Specific angular momenta

	Object	J/M (m ² s ⁻¹)
	Molecular cloud (1 pc)	1019
	Molecular cloud core (0.1 pc)	1017
	Binary (P=10 4 yr)	4x1016 - 1017
	Binary (P=10 yr)	4x1015 - 1016
	Binary (P=3 day)	4x1014 - 1015
	TTS (starting contraction)	5x1013
	0.5-day rotator on ZAMS	5x1012
	7-day rotator on ZAMS	4x1011
	Present Sun	1011
	Jupiter (orbit)	1016
AS 5002		Star Formation & Plasma Astrophysics

Numerical simulations of collapse • Bodenheimer et al 1988, in Formation and Evolution of Low-Mass Stars, eds. A K Dupree & M T V T Lago, Kluwer (NATO ASI series). Initial conditions: - Uniform rotation - Spherical cloud - Power-law density distribution - Isothermal - Total mass about 1 M_{Sun} • Assumptions: - No magnetic support - Each mass element conserves J Results: - Rapidly rotating central condensation, radius ~ 1 AU - Keplerian disc, radius ~ 100 AU AS 5002 Star Formation & Plasma Astrophysics

