MOLECULAR CLOUDS

- · Giant molecular clouds CO emission
 - several tens of pc across
 - mass range 105 to 3x106 M
 - clumpy substructure
 - lifetimes ~ 10^7 y ~ crossing time of clumps
- Temperatures too cold for H2 and He to emit
- Trace molecules like CO, H₂O, HCN, NH₃ excited by collisions with H₃
- Several thousand radiative transitions in range 0.7 GHz (43 cm) to 3800 GHz (77 μ m).
- CO 104 times less abundant than H,
- · Others rarer still.
- Some density diagnostics:
 - excitation of CO requires $n(H_2) \ge 10^8 \text{ m}^{-3}$
 - excitation of NH₃ requires $n(H_2) > 10^{10} \text{ m}^{-3}$

AS 5002

Star Formation & Plasma Astrophysics

Substructures (clumps) – CO emission

- $M_{cl} \sim 10^3$ to $10^4 \ M_{\odot}$
- R \sim 2 to 5 pc
- $n(H_2) \sim 10^{8.5} \text{ m}^{-3}$
- T ~ 10 K
- cf. Taurus Auriga complex.
- Cores NH₃, H₂CO, HC₃N, CS emission
 - $\begin{array}{l} \ \ \text{M}_{\text{core}} \sim 1 \ \text{M}_{\text{o}}; \\ \text{massive envelope} \\ \sim 10^2 \ \ \text{M}_{\text{o}} \end{array}$
 - R ~ 10⁻¹ pc
 - $n(H_2) > 10^{10} \text{ m}^{-3}$
 - T ~ 10 K

AS 5002

Star Formation & Plasma Astrophysics

Scalar virial theorem

- · Start with a set of particles.
- Stationary wrt an inertial frame at time to
- Typical particle: mass m, position <u>r(t)</u> acted on by force <u>P</u> has eq. of motion:

$$m\ddot{r} = P$$

$$\frac{d^2}{dt^2}(\boldsymbol{r}.\boldsymbol{r}) = 2\frac{d}{dt}(\boldsymbol{r}.\dot{\boldsymbol{r}}) = 2\dot{\boldsymbol{r}}^2 + 2\boldsymbol{r}.\ddot{\boldsymbol{r}}$$

AS 5002

Star Formation & Plasma Astrophysics

Sum over all particles

$$\frac{1}{2}\frac{d^2}{dt^2}\left|\sum mr^2\right| = \sum m\dot{r}^2 + \sum r.P$$
Moment of inertia I Twice total thermal KE of system:
assumed uniform
$$2M \times \frac{3kT}{2\mu\,m_H} = 3M\,c_s^2 \text{ where } c_s^2 = \frac{kT}{\mu\,m_H}$$
Total mass of particles
Mass of H atom

Mean mol. wt.

AS 5002

Star Formation & Plasma Astrophysics

The virial

 Forces P contributing to virial at points of application r:

Equal & opposite pairs, so no net contribution

- collisions with other particles in system
 self-gravitation due to
- self-gravitation due to other particles in system
- collisions with external material

 $\int_{\mathbf{m}} \mathbf{r} \cdot \mathbf{g} \rho \frac{dv}{\sqrt{}} = \Omega \equiv -A \frac{GM}{R}$ Mass of Grav.

particles in

vol. element

binding

eneray

Produce pressure
P at external
boundary S, | mr

contributing

 $\int_{S} p\mathbf{r} \cdot d\mathbf{S} = -p \int_{V} \nabla \cdot \mathbf{r} dv = -3pV$

Grav. force

per unit

mass at r

S V
Inward (For p uniform over S)

Star Formation & Plasma Astrophysics

Virial equilibrium

$$\frac{dI}{dt} = 0 \quad (t = t_0)$$

 For a body of gas released from rest at time t₀ under given external pressure p:

$$\frac{1}{2}\frac{d^2I}{dt^2} = 3Mc_s^2 - 3pV + \Omega$$

 If the initial state is also an equilibrium state we must also have:

$$\frac{d^2I}{dt^2} = 0 \quad (t = t_0)$$

> 0 gives expansion

< 0 gives contraction

AS 5002

Star Formation & Plasma Astrophysics

AS 5002

Self gravitation & thermal pressure

· Scalar virial equilibrium - pure thermal support:

AS 5002

AS 5002

Star Formation & Plasma Astrophysics

Spherical cloud

· Equilibrium condition becomes:

$$p_0 = \frac{3Mc_s^2}{4\pi R^3} - A\frac{GM^2}{4\pi R^4}$$
Define $R_1 = \frac{GM}{c_s^2}$, $p_1 = \frac{c_s^8}{4\pi G^3 M^2}$,
$$\Rightarrow \frac{p_0}{p_1} = 3\left(\frac{R_1}{R}\right)^3 - A\left(\frac{R_1}{R}\right)^4.$$

AS 5002

Star Formation & Plasma Astrophysics

Maximum equilibrium pressure

- For fixed M, c_s, get p-R relation defined by equilibrium condition:
- · 2 equilibria: one stable, other unstable.
- No equilibrium possible for pressures greater than point on relation where $dp_0/dR = 0$:

$$\frac{\tilde{R}}{R_1} = \frac{4}{9}A$$
, $\frac{\tilde{p}}{p_1} \sim \frac{3}{4} \left(\frac{4}{9}A\right)^{-3}$

Star Formation & Plasma Astrophysics

Jeans mass & length

· Express critical R, M in terms of mean density:

$$\tilde{R} = \frac{4AGM}{9c_s^2} = \frac{4AG}{9c_s^2} \cdot \frac{4\pi \tilde{R}^3 \bar{\rho}}{3}$$

$$\Rightarrow \tilde{R} = \left[\frac{27}{16\pi A} \cdot \frac{c_s^2}{G\bar{\rho}} \right]^{1/2} \sim \text{Jeans length } \lambda_J$$

$$\tilde{M} = \frac{4\pi \tilde{R}^3 \bar{\rho}}{3}$$

$$= \frac{4\pi}{3} \left[\frac{27}{16\pi A} \right]^{3/2} \left[\cdot \frac{c_s^2}{G} \right]^{3/2} \left[\frac{1}{\bar{\rho}} \right]^{1/2} \sim \text{Jeans mass } M_J$$

AS 5002

Star Formation & Plasma Astrophysics

Non-thermal support

- Using these expressions, for average clump n=108.5 m-3 and T=10K:
 - We find that $M_1 \sim \text{few } M_{\infty}, \lambda_1 \sim 1 \text{ pc}$
- But clumps have masses 103 to 104 Ma and are NOT collapsing on a free-fall timescale.

Clumps are much larger than the critical Jeans Mass, but are not undergoing free-fall collapse

- Need some other means of support.
- Two main observational clues:

High CO linewidths Du imply very supersonic fluid

Polarization maps indicate ordered magnetic fields

- Empirical power-law relation:

$$\Delta u \propto R^{\alpha}$$
, $\alpha \approx 0.5$

AS 5002

Star Formation & Plasma Astrophysics

AS 5002

Star Formation & Plasma Astrophysics