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Balancing heating with losses

From the energy equation, if there is no Ohmic heating, 

If the plasma is thermally isolated there is no exchange 
of heat and L = 0. This is the adiabatic case.  

The heat flux q can be written in terms of the conductivity κ

(ie heat flows in the direction of decreasing temperature)
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 Now the rate of heat loss from a  flux tube of 
volume V can also be written as the heat flux 
through the surface:

BUT: we only need to consider conduction along B, 
ie the flux through the two ends of the flux tube

Hence the rate of heat loss 
per unit volume is
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For an optically thin plasma, the radiative losses depend 
on the radiative loss function  Q(T) Wm3 (see handout)

i.e.

where

We can write this in terms of the density ρ = mn where for a 
fully-ionised H plasma,the total particle number n=2ne and 
the mean particle mass m=0.6mp (for the solar atmosphere)
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Applying this to a magnetic loop

Hence, for a static loop in thermal equilibrium with α = -1/2

For very low-lying (uniform pressure) loop with a 
uniform A and summit temperature Ts, then since 
globally radiation and conduction are similar in 
magnitude,

where
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Also, because globally heating and radiation are of 
the same order,

i.e.

If we consider the heating to be specified, we may 
combine these to give:

and

Both p and T increase when heating H increases or 
when the loop is stretched (L increases).
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Thermal Instability

We can rewrite the energy equation as

using

Hence if the pressure remains constant

This describes how the temperature changes in 
response to an imbalance in L.
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Start with a plasma in equilibrium:

A plasma has temperature T0 and density ρ0 under 
a balance between radiation and heating per unit 
volume (H = h ρ ) where h is a constant. 

Per unit mass

Now perturb this system at constant pressure to 
find a new temperature and density:

Note that since perturbation is small,
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Since the pressure is constant, the new density is

And so we have
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Hence if α < 1 a small decrease in T (T < T0) 
=> RHS < 0
=> the perturbation continues since

This thermal instability has a timescale
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This instability can be opposed by the effect of 
conduction which would add an extra term to the 
perturbed energy equation

For a fieldline of length L, the conduction time is
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Now, if L is small enough that

then conduction can prevent the runaway drop in 
temperature and the plasma is thermally stable.

However, there is a maximum loop length (where 
the two timescales are equal) given by

Loops longer than this may be thermally unstable.
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Observing stellar coronae

For an isothermal plasma at a temperature T, the 
power in a line radiated from a volume V is

contains atomic parameters and abundancies

the contribution function is strongly peaked in T

the emission measure can be calculated from P if 
the temperature is known. Note that this is often 
used interchangeably with the X-ray flux.
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Problems:
 The temperature and density cannot be found 
independently. Often only a temperature range can 
be specified. 
 Instrumental response must be taken into account 
when converting X-ray flux to emission measure.
 Several temperature components may contribute 
(unequally) to the observed emission in any 
temperature range.

Magnetic structure 
based on Zeeman 
Doppler image


