Starspot activity

Solar continuum image / Magnetogram

sohowww.nascom.nasa.gov

Star formation and Plasma Astrophysics

Sunspots:

- The number of spots varies with time over the solar magnetic cycle:
- peaking at ~110
- average minimum of \sim 5.
- \bullet Typical diameters 15 000 km or of order 1°
- Only small part of surface is covered in starspots
- < 0.5% at maximum

Starspots:

- Lightcurves
- Coverage measured from temperature sensitive lines such as TiO
- Indirect surface imaging

Star formation and Plasma Astrophysics

Lightcurves

Rapidly rotating single stars show variations in brightness which is attributable to cool starspots moving into and out of view as the star rotates

- measure rotation period

Eclipsing binary stars show distortions on top of eclipse events

Lightcurves show only subtle evolvution on timescales of days

Variation of lightcurves on timescales of weeks/months indicates relatively stable active regions

Star formation and Plasma Astrophysics

Temperature sensitive lines: TiO

- Starspot areas defined by a two temperature model i.e. a combination of two spectra represent the stellar surface
- 1) The normalised photospheric spectrum F_p
- 2) The normalised spot spectrum F_s
- Combine two spectra

 R_{λ} - flux correction factor

Fit for f_s - spot area (0-1)

 $F_{total} = \frac{f_s R_{\lambda} F_s + (1 - f_s) F_p}{f_s R_{\lambda} + (1 - f_s)}$

Star formation and Plasma Astrophysics

- \bullet Fits of 7055 A and 8860 A TiO bands indicate spot coverage values, fs = 0.15 0.50 for single line spectroscopic binaries
- Compare with 0.005 spot fraction for the sun

Star formation and Plasma Astrophysics

Stars: • Flux tube emergence models based on the solar paradigm • The solar flux tube emergence model can be modified by increasing the rotation rate • i.e. From solar period of 26 days ---> 1 day periods • Material in expanding flux ring is subject to a Coriolis force causing it to be deflected to higher latitudes • RESULT: Young rapidly rotating stars should possess spots only at intermediate/high latitude. No spots at low latitude. Deep convection zone and rapid rotation favour starspots at high latitudes Granzer et al. Astron. & Astrophysics (2000) 255, Star formation and Plasma Astrophysics

Starspot locations as a function of spectral type

Doppler images of main sequence stars include G dwarfs and K dwarfs which reveal cool surface features

Starspots are commonly found as:

- Small low-intermediate features
- Extensive high latitude features, including large polar caps
- At all latitudes (mainly from mid-K to M dwarfs)

Observations do not match theory as low latitude spots are excluded in the models

Star formation and Plasma Astrophysics