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We want to examine the types of 
disturbances that can arise in a 
uniform medium with a uniform 
magnetic field in the z-direction. 

We consider the effect of a small perturbation:

B = B0 + ε B1 + ε 2 B2 + �

v = v0 + εv1 + ε 2 v2 + �

where ε is the perturbation parameter and B1 B0 = O 1( )

�

�

�

�
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In the ambient medium we have no flow and a uniform field, 
pressure and density, i.e. to lowest order in ε 

B0 = B0 ˆ z v0 = 0 p0 = constant ρ0 = constant

∇ ⋅ B = 0 ⇒ ∇ ⋅ B0 + ε B1 + ε 2 B2 + �( )= 0

We expand each of the MHD equations as follows

and collect terms of the same order in ε 

O ε 0( )
O ε1( )

∇ ⋅ B0 = 0
∇ ⋅ B1 = 0
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∇ ⋅ B1 = 0
∂ρ1
∂t

+ ρ0 ∇ ⋅v1 = 0

∂ B1

∂t
= B0 ⋅∇( )v1 − B0 ∇⋅ v1( )

ρ0
∂v1

∂t
= −∇ p1 +

B0 ⋅ B1

µ
 

 
 

 

 
 + B0 ⋅ ∇( )B1

µ
∂p1
∂t

= c2 ∂ρ1
∂t

The full set of perturbed MHD equations to first order in ε is 
then, ignoring gravity and resistivity

(1)

(2)

(3)

(4)

(5)
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The solutions to these equations tell us about the nature of the 
perturbation. We define the perturbed magnetic and total 
pressures as

p1m = 1
µ

B0 ⋅ B1

p1T = p1 + p1m

and the perturbed velocities perpendicular to and parallel to the 
ambient field as

v⊥ = v1x ,v1y ,0( )
v = 0,0, v1z( )

 (6)

 (7)
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and so from (6)

∂ B1

∂t
= B0

∂ v1

∂z
− B0 ∇ ⋅ v1( )ˆ z 

Now from (3)

 (8)

 (9)

∂p1 m

∂t
=

1
µ

B0 ⋅
∂ B1

∂t

= B0
2

µ
∂v1z

∂z
− ∂v1x

∂z
−

∂v1y

∂z
− ∂v1z

∂z

 

 
  

 

 
  

= − B0
2

µ
∇ ⋅v⊥( )
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Hence,

∂p1T

∂t
= −c2ρ0 ∇⋅ v1 − B0

2

µ
∇⋅ v⊥( )

= −ρ0 c2 ∂v

∂z
+ c2 + vA

2( ) ∇ ⋅v⊥( )
 

 
  

 

 
  

 (10)

and from (5) and (2)

 (11)

∂p1

∂t
= −c2ρ0 ∇⋅ v1

= −c2ρ0 ∇⋅ v|| + ∇⋅ v⊥( )− B0
2

µ
∇⋅ v⊥( )
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Taking of the equation of motion (4) gives

ρ0

∂ 2 v1

∂t 2 = ∇ c2 ∂v||

∂z
+ c2 + vA

2( ) ∇ ⋅v⊥( ) 
 
 

 
 
 ρ0

+ ρ0vA
2 ∂ 2 v1

∂z2 − ∂
∂z

∇⋅ v1( )̂  z 
 

 
  

 

 
  (12)

∂ ∂t

ρ0

∂ 2 v1

∂t 2 = −∇
∂p1T

∂t

 
 
 

 
 
 +

1
µ

B0 ⋅ ∇( )∂B1

∂t

and using (8) and (11) now gives

Effects of tension
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The x-, y-, and z-components of (12) give

ρ0
∂ 2

∂t2 − vA
2 ∂ 2

∂z2

 

 
 

 

 
 v1x = − ∂

∂x
∂p1T

∂t

 
  

 
  

ρ0
∂ 2

∂t2 − vA
2 ∂ 2

∂z2

 

 
 

 

 
 v1y = − ∂

∂y
∂p1T

∂t

 
  

 
  

∂ 2

∂t2 − c2 ∂ 2

∂z2

 

 
 

 

 
 v1z = c2 ∂

∂z

∂v1x

∂x
+

∂v1y

∂y

 

 
 

 

 
 

(13)

(14)

(15)
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We have reduced our set of perturbed MHD equations (1-5) 
with a single equation (12) for the perturbed velocity. Note 
that so far we have made no assumptions about the nature of 
the perturbation, other than that it is small.

We now look for plane-wave solutions to (13-15) of the form

v1x = V1xe
i ωt−k

x
x−k

y
y−k

z
z( )

v1x v1y v1z p1T

∂
∂x

→ −ikx
∂
∂t

→ iω

for each of our unknowns

noting that, for example
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We obtain for (13-15) and (11)

ρ0 ω 2 − vA
2 kz

2( )V1x = kxωP1T

ρ0 ω 2 − vA
2 kz

2( )V1y = kyωP1T

ω2 − c2kz
2( )V1z = c2kz kxV1x + kyV1y( )

ω2 − vA
2kz

2( ) ω 4 − ω 2k2 c2 + vA
2( )+ c2vA

2 k2kz
2{ }= 0

These can be combined to give 

(16)

(20)

(18)

(19)

(17)

ωP1T = ρ0 c2 kzV1z + c2 + vA
2( ) kxV1x + kyV1y( ){ }
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This dispersion relation ω(k) clearly has three solutions for ω2. 
Before examining them in detail, we write down expressions 
for the forces that drive them.

ωP1 = ρ0 c2 kxV1x + kyV1y( )+ c2kzV1z{ }

kxV1x + kyV1y( )=
ω2 − c2kz

2( )V1z

c2kz

P1 = ρ0
ω
kz

V1z

From (10)

(21)

(22)

(23)

But, from (18)

and so

Hence pressure perturbations are related to velocity 
perturbations along the magnetic field.
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The magnetic pressure perturbation is from (9)

P1m = ρ0vA
2

ω
kxV1x + kyV1y( )

P1m = ρ0vA
2

ω
ω2 − c2kz

2( )V1z

c2kz

P1m =
ω 2 − c2kz

2( )
ω 2

vA
2

c2 P1

or, using (22) and (23)

(24)

(25)

(26)
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Finally, from (19)

or, using (22) and (23) and some algebra (!)

(27)ωP1T = ρ0 c2kzV1z + c2 + vA
2( ) kxV1x + kyV1y( ){ }

P1T = P1
ω 2c2 c2 + vA

2( ) ω 2 − cT
2 kz

2( )

cT
2 = c2vA

2

c2 + vA
2

P1T = ρ0
ω 2 − vA

2 kz
2( )

ωkx

V1x

where is the tube or cusp speed

or, from (16)

(28)

(29)
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Lastly, from (12) if we write the magnetic tension as

f1 = B0 ⋅∇( )B1 µ
then ∂ f1

∂t
= ρ0vA

2 ∂ 2 v1

∂z2 − ∂
∂z

∇ ⋅v1( )ˆ z 
 

 
  

 

 
  

with components ∂f1x

∂t
= ρ0vA

2 ∂ 2v1x

∂z2

∂f1y

∂t
= ρ0vA

2 ∂ 2v1y

∂z2

∂f1z

∂t
= −ρ0vA

2 ∂
∂z

∂v1x

∂x
+

∂v1y

∂y

 

 
 

 

 
 

(30)

(33)

(32)

(31)
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Fourier-analysing as etc givesf1x = F1xei ωt−k⋅r( )

F1x = −ρ0vA
2

iω
kz

2V1x

F1y = −
ρ0vA

2

iω
kz

2V1y

F1z = − ρ0vA
2

ω
ikz kxV1x + kyV1y( )

(34)

(35)

(36)

or, using (24) F1z = −ikzP1m (37)

So, across the field, the perturbed tension is related to the 
perturbed velocity components, while along the field it is related 
to the perturbed magnetic pressure.
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The three wave modes

Remember: phase speed

group velocity

ω k

∂ω
∂kx

, ∂ω
∂ky

, ∂ω
∂kz

 

 
  

 

 
  

�

�

�

θ

1. The Alfven wave

One solution of (20) is ω 2 − kz
2vA

2 = 0

ω 2 = k2 cos2 θvA
2i.e.
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ω k = ±vA cosθ

0,0,∂ω ∂kz( )= ±vA ˆ z 

phase speed

group velocity

Nature of the perturbations: 

P1T = 0 From (29)

and so from (28)

and so from (26), (5) and (23)

P1m = 0

P1 = 0

ρ1 = 0 V1z = 0

Hence also from (37) F1z = 0
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Summary: the Alfven mode is an incompressible motion, 
transverse to the magnetic field and driven by tension forces. It is 
anisotropic, unable to propagate across the field since

ω = 0 θ = π 2 kz = 0

ω 4 − ω 2k2 c2 + vA
2( )+ c2vA

2 k 4 cos2 θ = 0

2ω 2

k2 = c2 + vA
2( )± c2 + vA

2( )2
− 4c2vA

2 cos2 θ{ }1 2

for and

2. Slow and fast waves

The other two solutions of (20) are the roots of

i.e.

(38)
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Propagation: parallel to B0 θ → 0 ⇒ cos θ →1

θ → π 2 ⇒ cosθ → 0perpendicular to B0

2ω 2

k 2 → c2 + vA
2( )± c2 − vA

2( )

2ω 2

k 2 → 2 c2 + vA
2( )

0

 
 
 
  

fast wave

fast wave

slow wave

slow wave

2ω 2

k 2 →
max 2c2 ,2vA

2( ) 
min 2c 2 ,2vA

2( ) 
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� ��

θ
���

�

� ��� �	�
 �� � �

�

�
�

We can illustrate the dependence of the phase speed on the 
angle of propagation with a polar diagram drawn for the case 
where vA > c.

We note that only the fast wave propagates across the field 
and it has its greatest phase speed there.
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Looking at the forces

Remember from (26) that the magnetic and plasma pressure 
perturbations are related:

P1m

P1
=

ω2 − c2kz
2( )

ω2
vA

2

c2

P1m P1 > 0

P1m P1 < 0

ω 2 > c2kz
2

ω 2 < c2kz
2

for

for (in phase)

(out of phase)

Depending on the phase speed of the wave, these two pressure 
perturbations may act together or in opposition:
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ω 2 < c2kz
2Slow wave:

Hence the two pressure perturbations are always out of 
phase, so when one is trying to increase the local pressure, 
the other is acting to decrease it.

θ → π 2

and so the two pressure perturbations become exactly out of 
phase (so that the total pressure perturbation falls to zero). Since 
in this limit

As it can be shown that

P1m P1 → −1

kz → 0

the magnetic tension is also zero, (see 34-36) hence this mode 
cannot propagate across the field.
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ω 2 > c2kz
2

Fast wave:

Hence the perturbations in magnetic and plasma pressures are 
always in phase. Clearly, P1m/P1 (and hence P1T/P1) has a maximum 
for 

kz = 0θ = π 2
The tension force again falls to zero as θ → π 2

i.e.

The fast wave has its maximum speed perpendicular to the field, 
when it is driven by plasma and magnetic pressure perturbations 
acting in phase.

The relative phases of P1m and P1 allow us to distinguish 
between the fast and slow modes.



AS 5002 Star Formation & Plasma Astrophysics

Limiting cases:

1. Incompressible flow c2 >> vA
2

2ω 2

k 2 ≈ c2 1± 1 − 4 vA
2

c2 cos2 θ
 

 
 

 

 
 

1 2 
 
 

  

 
 
 

  

The dispersion relation (38) reduces to

As this becomes simply

ω 2

k2 →
∞

vA
2 cos2 θ

 
 
 

fast wave

slow wave

c2 → ∞
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Hence in the incompressible limit, the fast wave disappears 
and the slow wave has the same dispersion relation as an 
Alfven wave:

ω 2 → kz
2vA

2

However, its behaviour is quite different!!

For the slow wave: 

For the Alfven wave: 

v1z ≠ 0 P1 ≠ 0

v1z = P1 = 0
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2ω 2

k 2 ≈ vA
2 1± 1− 4 c2

vA
2 cos2 θ

 

 
 

 

 
 

1 2 
 
 

  

 
 
 

  

ω 2

k2 →
vA

2

c2 cos2 θ

 
 
 
  

vA
2 >> c2

2. Dominant magnetic field   (low β)

The dispersion relation (38) becomes

and as vA
2 → ∞

slow wave

fast wave

AS 5002 Star Formation & Plasma Astrophysics

ω 2 →
k2vA

2

kz
2c2

 
 
 
  

We can write this as

fast wave

slow wave

Hence in the low-β limit, the slow wave propagates 
anisotropically, while the fast wave is isotropic.

 The fast wave in this limit is sometimes (misleadingly) called 
� �

the compressional Alfven wave  but it is quite different from 
the Alfven wave.
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Wave propagation
Low plasma β �  i.e. strong magnetic field
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