A simple dynamo

Consider a small element of surface on a thin, spherical shell.
z : outward normal
y : points east
x : points south

All quantities are uniform in y, i.e. $\frac{\partial}{\partial y}=0$
AS 5002
Star Formation \& Plasma Astrophysics \qquad

To ensure $\quad \nabla . B=0 \quad$ we write B in terms of a flux function

$$
\begin{aligned}
& \underline{B}=\underline{\nabla} \times \underline{A}= \underline{\hat{x}}\left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right) \\
&-\hat{y}\left(\frac{\partial A_{z}}{\partial x}-\frac{\partial A_{x}}{\partial z}\right) \\
&+\hat{z}\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right) \\
& \text { giving } \quad \underline{B}=\left(-\frac{\partial A_{y}}{\partial z}, B_{y}, \frac{\partial A_{y}}{\partial x}\right)
\end{aligned}
$$

-

Hence the y-component of the induction equation

$$
\frac{\partial \underline{B}}{\partial t}=\underline{\nabla} \times(\underline{\mathrm{v}} \times \underline{B})+\eta \nabla^{2} \underline{B}
$$

gives

$$
\left(\frac{\partial}{\partial t}-\eta \nabla^{2}\right) B_{y}=\frac{d \mathrm{v}_{\mathrm{y}}}{d z} \frac{\partial A_{y}}{\partial x}
$$

Since the advection term only has a y-component, the x - and z-components of the induction equation only give diffusive decay, e.g. for x :

$$
\frac{\partial B_{x}}{\partial t}=\eta \nabla^{2} B_{x}
$$

AS 5002
Star Formation \& Plasma Astrophysics

To do this we add an extra term to E

$$
\begin{aligned}
& \underline{E}+\underline{E}_{\alpha}=-\underline{\mathrm{v}} \times \underline{B}-\dot{j} / \sigma \\
& \text { where } \underline{E}_{\alpha}=\alpha B_{y} \hat{\hat{y}}
\end{aligned}
$$

The induction equation then becomes

$$
\frac{\partial \underline{B}}{\partial t}=\underline{\nabla} \times\left(\underline{\mathrm{v}} \times \underline{B}+\underline{E}_{\alpha}\right)+\eta \nabla^{2} \underline{B}
$$

The y-component is unchanged, but we now have x - and z components from the electric field we have added:

$$
\frac{\partial \underline{B}}{\partial t}=\left(-\frac{\partial}{\partial z}\left(\alpha B_{y}\right), \frac{d \mathrm{v}_{\mathrm{y}}}{d z} \frac{\partial A_{y}}{\partial x}, \frac{\partial}{\partial x}\left(\alpha B_{y}\right)\right)+\eta \nabla^{2} \underline{B}
$$

AS 5002

Writing the x - and z-components in terms of the flux function and integrating gives

$$
\left(\frac{\partial}{\partial t}-\eta \nabla^{2}\right) A_{y}=\alpha B_{y}
$$

where the constant of integration is zero by symmetry (since α must change sign at the equator). This is very similar to the y-component:

$$
\left(\frac{\partial}{\partial t}-\eta \nabla^{2}\right) B_{y}=\frac{d v_{y}}{d z} \frac{\partial A_{y}}{\partial x}
$$

We assume that $\quad d \mathrm{v}_{\mathrm{y}} / d z \quad$ is a constant and look for plane wave solutions

AS 5002

$$
\begin{gathered}
B_{y}=B_{0} e^{\left[\omega t+i\left(k_{x} x+k_{y} y\right)\right]} \\
A_{y}=A_{0} e^{\left[\omega t+i\left(k_{x} x+k_{y} y\right)\right]}
\end{gathered}
$$

We note that

$$
\left(\frac{\partial}{\partial t}-\eta \nabla^{2}\right) \rightarrow\left(\omega+\eta k^{2}\right)
$$

$$
\text { where } \quad k^{2}=k_{x}^{2}+k_{y}^{2}
$$

to give

$$
\begin{gathered}
\left(\omega+\eta k^{2}\right) A_{0}=\alpha B_{0} \\
\left(\omega+\eta k^{2}\right) B_{0}=v^{\prime}{ }_{y} i k_{x} A_{0}
\end{gathered}
$$

AS 5002
Star Formation \& Plasma Astrophysics

We can separate ω into real and imaginary parts :

$$
\omega=\underbrace{-\eta k^{2} \pm|K|^{1 / 2}}_{\mathrm{Re}} \pm \underbrace{i|K|^{1 / 2}}_{\mathrm{Im}(\omega)}
$$

giving:

$$
B_{y}=B_{0} \exp \{\operatorname{Re}(\omega) t\} \exp \left\{i\left[\operatorname{Im}(\omega) t+k_{x} x+k_{y} y\right]\right\}
$$

The real part of ω gives a growing or decaying exponential, while the imaginary part gives oscillation. The behaviour of the magnetic field depends critically on the dynamo number:

$$
N_{D}=\frac{K}{\eta^{2} k^{4}}=\frac{\alpha k_{x} v_{y}^{\prime}}{2 \eta^{2} k^{4}}
$$

AS 5002

The real part

This may be positive (growing) or negative (decaying) depending on the magnitude of the dynamo number

$$
\left|N_{D}\right|>1 \rightarrow \operatorname{Re}(\omega)>0
$$

The imaginary part:

The direction of travel of the dynamo waves depends on the sign of the dynamo number

$$
\begin{array}{ll}
N_{D}<0 & \text { waves travel southwards (positive } \underline{\hat{x}} \text {) } \\
N_{D}>0 & \text { waves travel northwards (negative } \underline{\hat{x}} \text {) }
\end{array}
$$

