The code is described in Kobayashi+2000. Overview can be found in my book chapter.
If you use any of the data below please e-mail me priori to the submission of your paper, and cite both of the code paper and the data paper(s).
E-mail me if you want other models in my publications.
|
![]() |
|
![]() |
column 1: time in Gyr column 2: H/H_sun column 3: He/He_sun column 4: Li/Li_sun .... column 27: Fe/Fe_sun ... column 82: Bi/Bi_sun column 83: Th/Th_sun column 84: U/U_sunThe solar abundances are mainly the photospheric values from Asplund et al. (2009),
read{t 1 H 2 He 3 Li 4 Be 5 B 6 C 7 N 8 O 9 F 10 Ne 11 Na 12 Mg 13} read{Al 14 Si 15 P 16 S 17 Cl 18 Ar 19 K 20 Ca 21 Sc 22 Ti 23} read{V 24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Zn 31 Ga 32 Ge 33}The solar abundances are taken from Anders & Grevesse (1989).
read{t 1 H1 2 H2 3 He3 4 He4 5 Li6 6 Li7 7 Be9 8 B10 9 B11 10} read{C12 11 C13 12 N14 13 N15 14 O16 15 O17 16 O18 17 F19 18 Ne20 19 Ne21 20} read{Ne22 21 Na23 22 Mg24 23 Mg25 24 Mg26 25 Al27 26 Si28 27 Si29 28 Si30 29} read{P31 30 S32 31 S33 32 S34 33 S36 34 Cl35 35 Cl37 36 Ar36 37 Ar38 38} read{Ar40 39 K39 40 K40 41 K41 42 Ca40 43 Ca42 44 Ca43 45 Ca44 46 Ca46 47} read{Ca48 48 Sc45 49 Ti46 50 Ti47 51 Ti48 52 Ti49 53 Ti50 54 V50 55 V51 56} read{Cr50 57 Cr52 58 Cr53 59 Cr54 60 Mn55 61 Fe54 62 Fe56 63 Fe57 64 Fe58 65} read{Co59 66 Ni58 67 Ni60 68 Ni61 69 Ni62 70 Ni64 71 Cu63 72 Cu65 73 Zn64 74} read{Zn66 75 Zn67 76 Zn68 77 Zn70 78 Ga69 79 Ga71 80 Ge70 81}We currently release only those without s/r (which are used in Figure 31 of the paper); those with s/r also exist but are not published yet.
column 1: time [Gyr] column 2: SFR* [/Gyr] column 4: inflow rate* [/Gyr] column 5: outflow rate* [/Gyr] column 6: gas fraction* column 7: stellar fraction* column 8: gas metallicity [M/H] column 9: mean stellar metallicity <[M/H]>_* column 10: gas-phase iron abundance [Fe/H] column 11: mean stellar iron abundance <[Fe/H]>_* column 12: gas-phase oxygen abundance [O/H] column 13: mean stellar oxygen abundance <[O/H]>_* ~ <[Mg/H]>_** per unit solar mass of the system. In the models with no outflows/winds, the integral of inflow rate over t=0 to t=infinity is set to be 1.
column 1: [Fe/H] or [O/H] bin column 2: raw number at [Fe/H] bin column 3: observed number with 0.1 dex error column 4: raw number at [O/H] bin column 5: observed number with 0.1 dex errorNote that [O/H] = [O/Fe] + [Fe/H] ~ log Z/Zsun
szzfc ! name of model 1.3 ! index of initial mass function -- x (kx denotes Kroupa) 1.0 ! index of star formation -- ns 1.0 ! index of outflow -- no 4.7 ! timescale of star formation (Gyr) -- ts (1/ts gives the efficiency, as SFR is proportional to gas fraction) 5.0 ! timescale of inflow (Gyr) -- ti 0. ! timescale of outflow (Gyr) -- to (ts/to gives the loading factor, as outflow rate is also proportional to gas fraction) 0.01 ! lower mass (Msun) 50. ! upper mass (Msun) 3.0 ! lower mass of SNIa (Msun); for K06/K11 only, metallicity-dependent in K20 8.0 ! upper mass of SNIa (Msun); for K06/K11 only, metallicity-dependent in K20 0.9 1.8 ! lower mass of SNIa companion (Msun); for K06 only, metallicity-dependent in K11/K20 1.5 2.6 ! upper mass of SNIa companion (Msun); for K06 only, metallicity-dependent in K11/K20 0.02 0.04 ! SNIa parameters for RG+WD and MS+WD systems 0.0 ! initial gas mass -- g (1.0 for a closed-box model) 0.01 ! time step (Gyr) 15. ! end of time for calculation (Gyr)See Kobayashi+2000 for the definitions of SFR & inflow parameters, and Kobayashi+2006 for outflow parameters.
These data are owned and maintained by Chiaki Kobayashi (University of Hertfordshire), c.kobayashi at herts.ac.uk