VLBI astrometry of YSOs in nearby star-forming regions

Main collaborators: Laurent Loinard, Sergio Dzib, Phillip Galli, Marina Kounkel, Amy Mioduszewski, Luis F. Rodríguez.

Regional VLBI Workshop, Mexico City, 25 February - 1 March, 2019

Gisela N. Ortiz León Max Planck Institute for Radio Astronomy, Bonn, Germany

* Motivation * The GOBELINS project

* Comparison with Gaia

* Other astrometric works

* Future prospects

Outline of the talk

VLBI astrometry in star-forming regions

* Astrometry means

- * Accurate stellar positions
- * Parallaxes distances
- * Proper motions transverse velocities
- * +radial velocities 30 spatial velocities
- * Use this information to derive 3-D structure of molecular clouds * Identify multiple components within molecular clouds * Study the kinematics of molecular clouds

Motivation - (low-mass) star formation

Core

* Protostar evolves from deeply embedded (optically invisible) phase (Class 0) to optically visible T-Tauri star (Class II & III).

HerpioHaro

* Free-free (thermal) jets from low-mass young stellar objects.

 Ionization by photons arising from the shock of the - mostly - neutral stellar wind against the surrounding high-density gas.

100 AU

* Non-thermal radio emission

 Low-mass stars (10⁵-10⁷ yr) with magnetic activity are usually sources of compact, non-thermal (gyrosynchrotron) radio continuum emission.

50 AU Image: A. Karska

* A few Class I protostars with non-thermal radio emission are known, e.g.:

* YLW15 (SEP properties consistent with a Class I **YSO**).

Radio emission from (low-mass) young stars * Maser lines, non-thermal emission * Methanol (CH3OH, at 6.7 and 12.2 GHz) masers are excited by radiative pumping in the dusty environment around massive YSOs. * Water (H_2O , at 22 GHz) masers trace the shocked gas in jets and outflows in low- and high mass protostars.

*VLA widely used to characterize (and, very importantly, to locate) radio emission from YSOs, e.g.
* Bieging et al (1984), 80 μJy/beam
* Dzib et al (2013, 2015), 20 μJy/beam
* Kern et al (2016), 10 μJy/beam
* Forbrich et al (2016), 3 μJy/beam

*VLA major upgrade: increase in sensitivity

* Measurement of radio proper motions have been also obtained (e.g. Dzib et al 2017, ONC at 5 GHz).

35m00.00s 5h34m48.00s

 v. rantly, to locate) radio emission
 * Bieging et al (1984), 80 million
 * Dzib et al (200 is common in stars)
 * VLA
 * V *VLA widely used to characterize land, very n YSOs, e.g.

sensitivity

27'00.0"

36.00s 24.00s 12.00s RA (J2000)

* Measurement of radio proper motions have been also obtained (e.g. Dzib et al 2017, ONC at 5 GHz).

35m00.00s 5h34m48.00s

0,2 pc

VLBI sensitivity

*VLBI sources must have non-thermal radio emission *Brightness temperature sensitivity

 $T_b = 10^6 \left(\frac{S}{40\mu J_V}\right) \left(\frac{B_{\text{max}}}{8612 \text{ km}}\right)^2 \text{ K}$

*VLBI is sensitive only to compact, non-thermal radiation: *magnetic stars, masers \rightarrow commonly found in SFRs.

VLBI astrometry in star-forming regions

* Observations of molecular clouds are fundamentalto improve our understanding of protostellar evolution. * **Derivation of physical** parameters requires knowledge of the source distance.

VLBI astrometry

* Angular resolution:

3 0.3 0.1 0.7 $\lambda(cm)$ 5 $\theta_{\rm res}({\rm mas})$ 1.2 0.72 0.24 0.17 0.07 0.02

* Absolute astrometric precision:

* Systematic errors contribution > 200 µas (continuum, low-elevation targets). * Main contribution by unmodeled atmospheric delays * Possible contribution from unmodeled motions from unseen companion.

VLBI astrometry

* Phase referencing * Rapid switch between target and quasar.

* Cycle time 3~5 min

Target source

Background quasar a few degrees

mage: K. Menter

* Allows imaging of weak sources

* Positions are tied to an extragalactic reference frame

GOBELINS - A VLBA astrometric survey of (embedded) young stars

Scorpius

Serpens

Adapted from Ward-Thompson et al. (2007)

IC5146

Cepheus

LkHa

aurus

Perseus

Auriga

Pipe Nebula

Ophiuchus

Taurus Perseus Serpens Ophiuchus Orion Mon R2 Orion

GOBELINS - The GOuld's BELt distances Survey

IC5146

Cepheus

LkHa

urus

Perseus

Auriga.

Ophiuchus Lupus Pipe Nebula

Scorpius

Serpens

Taurus Perseus Serpens Ophiuchus Orion Mon R2 Orion

GOBELINS - A VLBA astrometric survey of (embedded) young stars

* Number of targets: ~270 YSOs * 2200 hours of telescope time for period 2012-2018 * 2 epochs/yr

VLBA March

Sun

VLBA September

Star

GOBELINS - A VLBA astrometric survey of (embedded) young stars

* VLBA detections

* From Class I to Class III objects

* Emission shows high flux variations

* Brightness temperature consistent with non-thermal radiation (>10⁶ K)

GOBELINS main results - Astrometry

GOBELINS main results - Distances

Based on almost 100 stars with non-thermal radio emission observed

Region	Cluster	Distance
Ophichus	L1688	138 ± 3 pc
	L1699	144 ± 1 pc
Corpoian	Serpens Main	436 ± 9 pc
Serpens	W40	436 ± 9 pc
	Trapezium	383 ± 3 pc
	ONC	388 ± 5 pc
Oriou	L1641	428 ± 10 pc
Urium	NGC 2024	~ 420 pc
	Sigma Ori	~ 300 pc
	NGC 2068	388 ± 10 pc
+ (epheus, Monocer	ros, LKHa

Dzib et al. (2011, 2016, 2018)

Region	Cluster	Distance
	L1495	129.5 ± 0.3 pc
	L1495/B216	158.1 ± 1.2 pc
	L1513+1519	142.6 ± 2.3 pc
Taurue	L1531	126.6 ± 1.7 pc
1001 05	L1534	138.6 ± 2.1 pc
	L1536	162.7 ± 0.8 pc
	L1551	147.3 ± 0.5 pc
	BDN176.28-20.89	148.7 ± 0.9 pc
Perseus	IC348	321 ± 10 pc

References: Torres et al. (2007, 2009), Dzib et al. (2010), Ortiz-León et al. (2017ab), Kounkel et al. (2017), Galli et al. (2018), Ortiz-León et al. (2018)

* Long-period binaries:

* Proper motion + parallax + acceleration terms.

Name	a (au)	P (yr)	M1 (Msun)	M2 (Msun)	* Confirmed hinarie
LFAM15	2.31 ± 0.02	3.598 ±0.005	0.506 ± 0.002	0.450 ± 0.010	* Ophiuchus 10
YLW12Bab	1.74 ± 0.01	1.424 ± 0.001	1.244 ± 0.007	1.362 ± 0.017	* Serpens 2
SFAM87	4.98 ± 0.03	7.673 ± 0.005	1.076 ± 0.020	1.024 ± 0.027	* Taurus 6
DOAR51	4.71 ± 0.07	8.071 ± 0.030	0.815 ± 0.004	0.788 ± 0.034	* Orion 3 * Binary gandidator
ROXN39	6.9 ± 0.1	11.77 ± 0.008	1.63 ± 0.01	0.96 ± 0.05	* Orion 5
S1	2.65 ± 0.03	1.736 ± 0.002	5.2 ± 3.6	1.0 ± 0.7	* Ophiuchus 2
EC95	12.4 ± 0.1	21.36 ± 0.05	1.97 ± 0.05	2.21 ± 0.10	* Serpens 1
GFM65	3.5 ± 1.0	5.5 ± 1.4	0.6 ± 1.5	0.7 ± 1.0	* Perseus 2

 Previously unknown companion detected by its astrometric signature.

* VLBI's potential to discover new hidden companions to pre-main sequence stars.

Gaia's astrometric catalogs

- * DR1, 14 September 2016
 - * 14 months of observation
 - * Total number of sources: 1,142,679,769
 - * Parallax and proper motions: 2,057,050 (Tycho-Gaia Astrometric Solution)
- * DR2, 25 April 2018
 - * 22 months of observation
 - * Total number of sources: 1,692,919,135
 - * Parallax and proper motions: 1,331,909,727

* 18 VLBA stars with astrometric solutions.

* 10 additional stars available in Gaia-DR1.

* 8 stars in common.

Taurus - VLBA + Gaia DR1

l (°)

Galli+ (2018)

(。) q

Av (mag)

Taurus - VLBA + Gaia DR1

* Parallax distances reveal important depth effects within the cloud.

Taurus - VLBA + Gaia DR1

* Parallax distances reveal important depth effects within the cloud. * Sub-structures also exhibit different kinematic properties.

The Perseus Molecular Cloud - VLBA + Gaia DR2

* The two main clusters, IC 348 and NGC 1333, contain together ~680 young stars (1-3 Myr).

Only a small fraction of these are radio emitters (Pech+ 2016) and only seven were detected with the VLBA. 33.0

OEC ()2000) 31.5

30.0

The Perseus Molecular Cloud - Gaia DR2 parallaxes * Astrometric solutions in Gaia DR2 catalog for 351 (IC 348) and 90

(NGC 1333) stars.

TOOK INTO ACCOUNT THE GAIA PARALLAX ZERO-POINT ERROR

Gaia parallax zero-point error

et al, 2018, pl).

* "Gaia parallaxes are on the whole too small by about 0.03 mas" (Lindegren

* Pistance between the eastern and western edges of the cloud is only ~30 pc, which is significantly smaller than previously thought le.g. Hirota et al 2008, 2011).

The Perseus Molecular Cloud - Kinematics

* Cluster kinematics from proper motions and radial velocities

NO expansion or rotation (A similar result was found independently by Kuhn et al 2018)

 $v_{\rm exp}$, $\vec{v}_{\rm rot} < 2 \,\rm km \, s^{-1}$

DEC (J2000)

* Offset between Gaia and VLBA is positive for the most embedded part of the cloud, but negative outside.

* Gaia may be biased against the brightest sources (selection ettect).

VLBA vs. Gaia DR2 - Ophiuchus

* A distance controversy in the Aquila Rift. * VLBA yielded a firm solution based on the astrometry to a few stars.

* Gaia confirms that Serpens South and Serpens Main are at very similar distances. * Gaia parallaxes yield: * Serpens Main * d_Gaia = 423 ± 41 pc * Serpens South * d_Gaia = 425 ± 41 pc * Offsets (with respect to VLBA): * +0.06 mas (Serpens Main) * +0.13 mas (Serpens South)

VLBA astrometry of water masers * IRAS 16293-2422 * One of the bet studied systems of Class O objects

VLBA astrometry of water masers

* IRAS 16293-2422

* Simultaneous fit of two spots allowing them to have a positional offset.

* Simultaneous fit of two spots assuming they are the same.

The Gould's Belt

Galactic structure (proposed to be an elliptical ring) containing most of the nearby young and OB stars. Estimated sizes are ~373 x 233 pc and its inclination to the Galactic plane is ~20° (Perrot & Greiner 2003; Bobylev 2016).

Star-Forming Regions associated to the Gould Belt

* To study the kinematics of the Gould Belt, we investigate the astrometry of ALL starforming regions within 0.5 kpc, in addition to those observed by GOBELINS.

Region	
Barnard 59	3
Cepheus Flare	1
Cepheus - NGC 7129	1
Chamaeleon I	2
Chamaeleon II	3
ϵ Chamaeleontis	3
Corona Australis	3
IC 5146	0
Lupus 1	3
Lupus 2	3
Lupus 3	3
Lupus 4	3

Dzib et al. (2018)

* Mean (X,Y,Z) positions are used to fit an ellipsoid that approximates the spatial distribution of the regions:

$(358 \pm 7) \times (316 \pm 3) \times (70 \pm 4) pc$

$(x_{0}, y_{0}, z_{0}) = (-82 \pm 15, 39 \pm 7, -25 \pm 4) pc$

$\hat{\mathbf{r}} \cdot \mathbf{v} = 2.5 \pm 0.1 \text{ km s}^{-1}$ $\sigma = 0.8 \text{ km s}^{-1}$

VLBI astrometry in the Gaia era - Dynamical masses

* Dynamical masses of YSOs from VLBA astrometry * PI: S. Pzib + GOBELINS team. * 19 systems currently being observed

* ~300 hours with the VLBA in PRIORITY A for a period of 3 years.

* Gaia will resolve all binaries (brighter than V=15) with separations above some 20 mas which have moderate magnitude differences between the components.

Brown dwarfs and sub-stellar companions

