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At least three different ways to view/analyze interferometers...

|. An antenna with non-contiguous parts
or a single huge antenna, with much of the surface missing.
Analysis in terms of fringes’; appropriate for adding interferometers

2. Electric field of the astronomical source can be measured in a plane on
the sky, by locating two antennas in a parallel plane on the Earth.
The antennas measure the correlation function of the field, which is
the Fourier Transform of the source brightness distribution.

3. Two antennas receiving a signal from a point source from direction ), with
an excess travel distance B cos 1) to the further antenna. This produces an
interference pattern with a “fringe phase’ which can be "stopped’ by inserting
a delay into the signal path.



Why use interferometers at all? The Problem of Angular Resolution

©~A/D
Angle ~ wavelength / telescope diameter
For single-dish telescopes, this is both

the Field-of-View and the
Angular Resolution

Beam solid angle 2,

Antenna
pattern

Optical Telescopes

500 nm

= 0.00000006
8m

Earth-based limit about one arcsec
(seeing limited, not diffraction limited)

Half-power
beamwidth
(HPBW)

Radio Telescopes

1cm About 70,000 AU at | kpc

= 0.0003

About one arcmin

Om

or about 1000X the Solar System




© ~A\/B

B is the baseline, or the
separation between antennas

Micro-arcsec resolution is possible

Two beam sizes now important:
|) Primary beam (field of view) from diameter D
2) Synthesized beam (resolution) from spacing B




Making Images with Single-Dish Telescopes

Even worse!

4 x 36 = 144 pointings
for ‘half-beam’ sampling
that satisfies the
Nyquist Criterion

OTF: On The Fly mapping
via raster scanning is
another option

6 x 6 pixels from 36 pointings

vs 2048 x 2048 in optical CCDs!
But how do we

make images with
an interferometer?

FPA: Focal Plane Arrays (multi-pixel feeds)
Speed both multiple pointings and OTF mapping




Problem: How to form something (anything!) from sines and cosines!?

Solution is well-known from music: Fourier Synthesis
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For images we’ll use spatial, rather than temporal frequencies




Antenna pairs act so as to form a two-slit interference pattern
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Interference pattem on screen
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Viewing

Maxima occur when

dsind =nAi

Spacing of — A_D
maxima is: Y= d

Small slit spacing gives
a large pattern spacing

Large slit spacing gives
a small pattern spacing

Closely spaced antennas sample low spatial frequencies: they see big things
Widely spaced antennas sample high spatial frequencies: they see small things



Low Spatial Frequencies Show Larger Shapes

High Spatial Frequencies
Show Fine Details but lose
The Bigger Shapes




Getting the Fourier Components

I(x,y) = j j V(u, v)e 2mWx+vy) qy dv

Sky brightness = Fourier Transform of the Visibilities in uv space
b by,

q 0 X q 0
(x,y) in radians u= 7 V= 7 (U, V) in kilo or mega wavelengths
Normalized Response
Visibilities are the cross-correlation of the /\ /\ %\ /\ ﬂ
antenna signals, corrected for the fringe function . . . — 6 adons
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The effects on uv coverage by adding the Goonhilly antenna to e-MERLIN
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Better coverage of the uv plane gives better images!



If we have Radio Interferometry, Why do we needVLBI? and What’s so special about it!

V4

Connected-element interferometers have a real-time connection
between the antennas

The correlation of the antenna signals occurs in real-time

/

5 ® - But what if we need baselines so long that
V,=Vcos[w(t—7,) V,=Vcos(wt . . R
vy, real-time connections don’t work!?
”“‘“/\/V\ Suppose we need | milli-arcsec resolution at 30 GHz
R=(V2/2)cos(wT,)

A | mas is 4.85 x 10 radians
Solution is to record the data 0~ — .'

B 30 GHz is | cm wavelength
at each antenna, for later
correlation -

485 %x 107° =

2000 km



VLBI vs Connected-Element Interferometry: What'’s so different?

A) Each antenna needs an atomic clock

B) High brightness temperature sources are needed

C) Only a small field of view can be imaged (BW smearing is extreme)

A) Greater Hardware Requirements

The correlation process requires very precise time-stamping of the data,

hence the need for atomic clocks at each station

Lots of disk storage capacity is needed

Shipping & Correlation

| Sustainable Rate | Disk purchase

Disk cost

Other costs

~ COS1

Year (Mbps) (TB) ($/GB) ($/GB)
] 256 | 825 1 15 $1.0M |
2 512 825 75 15 $0.8M
3| 1024 | 1750 50 10 $1.0M |
Total | | 3300 $2.8M

Infrastructure is needed



B) What’s the deal with brightness temperature?

Resolution depends on antenna separation
Sensitivity depends on antenna area

VLA in D-array VLBA
27 % 25 %2 = 1664 m?2 True collecting area 10 x 25 %2 = 620 m?
m (0.5 km)? = 785,000 m? Spanning area m (4000 km)? =5 x 10'3 m?
1072 Fractional area 10~
‘ High source brightness temperature is needed ~ 10K

Not all astronomical sources can be detected!



C) Why the small field of view?

Bandwidth and Time Smearing
limit the angular area over which
an image can be made

Typical map dimensions are < | arcsec

Multiple positions may be mapped with multiple correlations

Software correlators allow these positions to be
mapped simultaneously

Normalized Response
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Visibility (Jy)

How many antennas do you need to make an image?
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