Wide-field VLBI Surveys

Astronomisches Institut RUHR-UNIVERSITÄT BOCHUM

Noelia Herrera Ruiz

Astronomical Institute Ruhr-University Bochum (Germany)

Regional VLBI Workshop Mexico, Feb 26, 2019

launa Kea, Hawaii

Credit: NRAO/AUI/SeaWiFS (NASA/GSFC)/ORBIMAGE

First part: Introduction to the wide-field VLBI technique

Early wide-field VLBI

- Field of View (FOV) restricted by:
 - Bandwidth smearing
 - Time-average smearing
 - Computational cost and data storage capabilities
- Traditionally, observations recorded on a tape and shipped
- Hardware correlator (spectral and temporal resolution limited)
- To avoid smearing effects, high spectral and temporal resolution needed (sensitivity compromised)

- EVN (330 MHz) two overlapping fields: Lenc et al. (2008). 1σ ~ 1-10 mJy/bm
 - t_{average} 0.25s, 31.25 kHz channels.
 - 272 targets, 27 detected sources.

Early work

Global VLBI array – HDF-North and Flanking Fields: Chi et al. (2013)

1σ ~ 7.3-37 μJy/bm

- t_{average} 0.25s, 31.25 kHz channels.
- 48 targets, 12 detected sources.

5/25

Improvements

- High-performance computing
- Modern hard disk data-recording systems
- Software correlators
- Deller et al. (2007): DiFX (Distributed FX). Improved spectral and time resolution
- Deller et al. (2011): DiFX-2. Multi-phase centre mode (uv shift)

Red circle: 31' (antenna primary beam) Green circles: 12" (field of view VLBI)

Deller et al. (2011)

Recent Surveys

- VLBA Chandra Deep Field South: Middelberg et al. (2011)
 - 1σ ~ 55 μJy/bm
 - 96 targets, 20 detected sources.
- VLBA Lockman Hole/XMM field: Middelberg et al. (2013)
 - 1σ ~ 24 μJy/bm
 - 217 targets, 65 detected sources.

Middelberg et al. (2013)

Recent Surveys

- VLBA mJIVE-20 (mJy Imaging VLBA Exploration at 20 cm): Deller & Middelberg (2014)
 - ~25000 targets from the FIRST (Faint Images of the Radio Sky at Twenty cm) Survey.
 - 4965 detected sources.
 - 1σ ~ 148 μJy/bm

8/25

Recent Surveys

- VLBA COSMOS Field: Herrera Ruiz et al. (2017)
 - 1σ ~ 10 μJy/bm
 - ~3000 targets, 468 detected sources.
- VLBA+GBT region of COSMOS field: Herrera Ruiz et al. (2018)
 - 1σ ~ 3 μJy/bm
 - 179 targets, 35 detected sources.
- EVN GOODS-N Field: Radcliffe et al. (2018)
 - 1σ ~ 9 μJy/bm
 - 699 targets, 31 detected sources.

Future Surveys

- EVN+eMERLIN COSMOS PI: Jack Radcliffe (jack.radcliffe@manchester.ac.uk)
 - 1σ ~ 1 μJy/bm
 - ~400 targets estimated
 - ~130 detections expected
- VLBASS (VLBA Sky Survey) (EoI) –
 Pls: Jack Radcliffe & John McKean
 - 1σ ~ 0.1 mJy/bm
 - Targets from the VLASS
 - (~4 million radio sources predicted).
 - A million detections expected.

- LOFAR (Low-Frequency Array) VLBI (110-240 MHz)
 - Pipeline improved and in testing stage (github/Imorabit).
- MeerKAT-VLBI
 - Southern hemisphere coverage.
 - North-south (east-west) baselines.

Science with wide-field VLBI

- Surveys at mas-scales
- Disentangle contributions from AGN and star-formation processes
- Interplay AGN host galaxy
- Better understanding of feedback processes
- Study rare radio source classes
- Radio weak lensing cosmology
- Variability
- Astrometry
- Serendipity

Second part:

Wide-field VLBI and the faint radio population

Motivation

- AGNs play an important role in galaxy evolution
- Radio surveys indispensable
- Statistically study the faint radio population:
 - Radio source count distribution
- Sub-samples of rare or sparse objects:
 - Radio-quiet quasars (RQQs)
 - Spiral DRAGNs (Double Radio sources Associated with Galactic Nuclei)
 - Supermassive black hole (SMBH) binary systems

Radio source counts

- Measure AGN incidence in large samples of objects.
- Radio-loud AGN dominate at flux densities > 1 mJy.
- Sub-mJy radio sky, blend of star forming galaxies and radio-quiet AGNs.

The project

 Goals: Create a reliable AGN catalogue and analyse the AGN component in the faint radio population.

- First step: ~ 3000 COSMOS radio sources (VLBA).
- Second step: ~ 200 COSMOS radio sources (VLBA+GBT).

Observations

- VLBA data: 23 Pointings (rms noise 10 µJy/beam)
- VLBA+GBT data: 1 Pointing (rms noise ~ 3 µJy/beam)

- 1.4 GHz
- Input catalog:
 VLA Schinnerer+10

Image courtesy of NRAO/AUI

Credit: NRAO/AUI/NSF

Calibration

- AIPS (ParselTongue)
- Specialised steps for wide-field VLBI:
 - Multi-source self-calibration
 - Primary beam correction
 - Data combination

GBT primary beam response

19/25

VLBA data

X-ray counterparts

Herrera Ruiz et al. (2017)

VLBA and VLBA+GBT data

Euclidean-normalised radio source counts (40-55%)

21/25

VLBA-detected Radio Quiet Quasars

ID	q ₂₄	$\mathbf{R}_{\mathbf{i}}$	$\mathbf{R}_{\mathbf{x}}$	$\mathrm{P}_{5\mathrm{GHz}}$	R	R _V	$L_{\rm X}$	q_{24obs}	DW^{a}
C0366	\checkmark	\checkmark	\times	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
C1397	\checkmark	\checkmark	\times	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
C1897	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Herrera Ruiz et al. (2016)

0.5

C2

1.4

Binary black hole systems

23/25

-20

Spiral DRAGNs DRAGN = Double-lobed Radio sources Associated with Galactic Nuclei 26°35'45 26°35'20" 35'30" (J2000)Declination (J2000) 35'10" 35'15" Declination 35'00" 35'00" 34'45' 34'50" 34'30" 16^h49^m25^s 24^{s} 23^{s} 16^h49^m26^s Right Ascension (J2000)

Mao et al. (2015)

 24^{s}

Right Ascension (J2000)

 22^{s}

Summary

- Wide-field VLBI has been developed and improved to make possible observations of large portions of the sky at mas-scales.
- Current and future VLBI surveys and facilities look promising for further progress.
- The use of multiple AGN identification methods is important for unbiased AGN pupulation.
- From the VLBA-COSMOS, 40-55% AGN contribution to the faint radio population.