

HST & Spitzer: Wang, Stolovy et al 2015

Stellar Orbits Around Sgr A*

Genzel, Gillessen et al

Strong Evidence for a Black Hole

The Largest Black Holes on the Sky

M87 NGC 4486 HST ACS/WFC V 15,000 light-years F814W F606W 4600 parsecs 57"

Walker et al 2018

M87 INNER JET

2007: Interval three weeks VLBA at 43 GHz Resolution 0.21 X 0.43 mas Scale: 1 mas = 0.081 pc ≈ 140 Rs

Walker, Hardee, Davies, Ly, & Junor Ap. J. 2018

THE END OF EARTH WILL NOT BE THE END OF US.

MCCONAUGHEY HATHAWAY

CHASTAIN

MICHAEL

<section-header><text><text><text>

Light Bent by the Black Hole

The Black Hole Shadow

Fundamental Physics with Sgr A*

Constraints on Black Hole Spin from images Broderick et al 2011

Constraints on Geometry/Mass from Orbiting Hot Spots Doeleman et al 2009

Violations of the No-Hair Theorem Introduction of Quadrupole Moment Psaltis and Broderick

Kramer et al

Event Horizon Telescope

- Global collaboration to observe BHs with resolution comparable to the event horizon
 - >200 members
 - Dozens of institutions
- Ad hoc array operated ~10 days per year
- Technology development

Event Horizon Telescope

Funding Support

Institutions on the EHT Board

Academia Sinica Institute of Astronomy and Astrophysics University of Arizona University of Chicago East Asian Observatory Goethe-Universität Institut de Radioastronomie Millimétrique Large Millimeter Telescope Max Planck Institute for Radioastronomy MIT Haystack Observatory National Astronomy Observatory of Japan Perimeter Institute for Theoretical Physics Radboud University Smithsonian Astrophysical Observatory

Event Horizon Telescope

Affiliated Institutions

Aalto University Universiteit van Amsterdam Arizona Radio Observatory Instituto de Astrofísica de Andalucía Instituto Nacional de Astrofísica, Óptica y Electrónica Institute for Astrophysical Research Boston University **Brandeis University** University of California, Berkeley California Institute of Technology **Chinese Academy of Sciences Cologne University** Universidad de Concepción **Cornell University** Institute of High Energy Physics Huazhong University of Science & Technology University of Illinois Joint Institute for VI BI FRIC

Kavli Institute for Astronomy and Astrophysics Korea Astronomy and Space Science Institute Leiden University University of Maryland University of Massachusetts Amherst Max Planck Institute for Extraterrestrial Physics Nanjing University National Astronomical Observatories of China **Onsala Space Observatory** Peking University Purple Mountain Observatory University of Science and Technology University of Science and Technology of China Seoul National University Shanghai Astronomical Observatory Institute of Statistical Mathematics University of Waterloo Yunnan Observatory

Event Horizon Telescope

Global Team at the EHT2016 Conference

Members of the EHT team at Telescopes

Practical Challenges of BH Shadow Imaging

• Shadow is very small

 $-\theta_{\rm g}$ = GM/Dc² ~ 5 µas

 $-\theta_{\rm shadow}$ ~ 10 GM/Dc² ~ 50 µas

• Need a global mm VLBI array

 $-\theta_{array} = \lambda/D = 1.3$ mm/11000 km ~ 20 µas

• But no such network exists!

Need to use an ad hoc network

Event Horizon Telescope in 2018

SMA/JCMT

Practical Challenges of BH Shadow Imaging

• Atmosphere at mm wavelengths is difficult

Goldsmith et al

Matthews et al 2018

Practical Challenges of BH Shadow Imaging

Sources are faint and resolved on long baselines

— S~1 Jy

- Millimeter telescopes are not very sensitive — SEFD~10⁴ Jy
 - dS = SEFD/sqrt(2*BW* τ) ~ 50 mJy
 - BW=2 GHz, *τ*=10 s
- \rightarrow New Telescopes
- \rightarrow Increase BW

ALMA Phasing

Matthews et al 2018

Recording rate capability vs. time

Whitney et al 2012

High Frequency Requires High Precision

ALMA Maser Performance Matthews et al 2018

Scattering Blurs Imaging

Haggard & Bower, Sky & Tel, 2016

The Intrinsic Size of Sgr A*

Johnson et al 2018

MM VLBI Imaging of Sgr A*

EHT Polarization of Sgr A*

Johnson et al 2015

EHT Polarization of Sgr A*

Johnson et al 2015

Event Horizon Telescope in 2017

- Atacama Large Millimeter Array (ALMA), Chile
- ALMA Pathfinder Experiment (APEX), Chile
- James Clerk Maxwell Telescope (JCMT), Hawaii
- Large Millimeter Telescope (LMT), Mexico
- IRAM 30-meter Telescope, Spain
- South Pole Telescope (SPT), South Pole
- Submillimeter Array (SMA), Hawaii
- Submillimeter Telescope (SMT), Arizona

Multi-Wavelength Coverage: Sgr A* in April 2017

Multi-Wavelength Coverage: M87 in April 2017

u-v Coverage with EHT 2017: Sgr A*

Calibration & Error Analysis WG

u-v Coverage with EHT 2017: M87

Calibration & Error Analysis WG

EHT2017: A Large Number of Highly Significant Detections

EHT2017: Quantifying and Understanding Measurement Uncertainties

Closure phases along trivial triangles are consistent with zero, within thermal uncertainties

EHT2017: J1733-1304

EHT2017: 3C273

The Event Horizon

Telescope

- The highest resolution images of black holes
- Inclusion of ALMA and LMT is a leap in sensitivity and imaging quality
- 2017 data are excellent
- Extreme care is being taken in analysis and imaging
- Big things to come in 2019 and beyond!

Follow updates online:

https://eventhorizontelescope.org

https://twitter.com/ehtelescope

https://www.facebook.com/ehtelescope

A Pulsar in Orbit Around a BH

Kramer et al

Using Pulsars to Measure Spacetime Around Sgr A*

Liu et al 2012

Galactic Center Magnetar Discovery

Degenaar et al. 2013 Kennea et al. 2013

SGR J1745-29

X-ray Localization: ~2" to Sgr A*

Rea et al. 2013

2" ~ 0.1 pc

Radio Detection

- P = 3.76354676(2) s
- P/Pdot \rightarrow B ~ 10¹⁴ G
- T_{spindown}~ 9000 yrs
- DM = 1778 +/- 3 cm⁻³
 pc
- RM = $-7 \times 10^4 \text{ rad m}^{-2}$
- Flux ~0.2 1 mJy
- spectrum ~flat
- Only 4 radio magnetars known – chance alignment is 10⁻⁸

Eatough et al. 2013 Shannon and Johnston 2013

normalised flux

Known GC Pulsars

P (ms)	B (10 ¹² G)	DM (pc cm ⁻³)	τ _{sc} (2 GHz; ms)
1077	38	962	100
1478	3	1456	145
982		1088	
945	4	1168	
187		1130	144
	P (ms) 10777 1478 982 982 945 187	P B (10 ¹²) (1077) (38) 1077 338 1478 (3) 982 945 (4) 187	P (ms)B (1012 G)DM (pc cm ⁻³)1077389621077389621478314569821088945411681871130

Johnston et al. 2006 Deneva et al. 2009 Arches cluster -

Cavity excavated by heavy stars

Quintuplet cluster

Milky Way centre

HST & Spitzer: Wang, Stolovy et al 2015

10³ pulsars with P < 100 y
 Pfahl & Loeb 2004

Angular Broadening of the Pulsar

Temporal Scattering

Scattering Inhibits Imaging

Haggard & Bower, Sky & Tel, 2016

A New Distance for the GC Scattering Screen

Astrometry of SGR J1745-29

The GC Pulsar Likely Originates in the Clockwise Stellar Disk

- V_{proj}=240 +/- 3 km s⁻¹
- R_{proj}=0.097 pc
- P>700 y
- Acceleration measures |z| and would conclusively demonstrate that the PSR is bound to Sgr A*

Exciting Times in the Galactic Center

Fundamental Physics Compact Objects More...

