





**GREAT:** Gaia Research for European Astronomy Training Nicholas Walton (Institute of Astronomy) **UNIVERSITY OF** CAMBRIDGE





### Gaia: mapping the Universe **CDR complete: launches May 2013**

|                   |           | Hipparcos         | Gaia                                               |                                       |
|-------------------|-----------|-------------------|----------------------------------------------------|---------------------------------------|
|                   | e limit   | 12                | 20 mag                                             | · ·                                   |
| Bright limit      |           | 7.3 – 9.0<br>0    | 6 mag                                              |                                       |
| Number of objects |           | 120.000           | 26 million to V = 15                               | A A A A A A A A A A A A A A A A A A A |
|                   |           | 120 000           | 250 million to V = 18                              |                                       |
|                   |           |                   | 1000 million to $V = 20$                           |                                       |
| Effective c       | listance  | 1 kpc             | 1 Mpc                                              |                                       |
| Quasars           |           | None              | $5 \times 10^5$                                    |                                       |
| Galaxies          |           | None              | $10^6 - 10^7$                                      | Images                                |
| Accuracy          |           | 1 milliarcsec     | 7 $\mu$ arcsec at V = 10                           | ESA                                   |
| ,                 |           |                   | 10-25 µarcsec at V = 15                            |                                       |
|                   |           |                   | 300 µarcsec at V = 20                              |                                       |
| Photometry        |           | 2-colour (B and \ | V) Low-res. spectra to V = 20                      |                                       |
| Radial velocity   |           | None              | 15 km/s to V = 16-17                               |                                       |
| Observing         |           | Pre-selected      | Complete and unbiased                              |                                       |
|                   |           | 404.00            |                                                    |                                       |
| ~~-               |           | 104.260           |                                                    |                                       |
| <b>T</b>          |           |                   |                                                    |                                       |
|                   |           |                   |                                                    |                                       |
|                   |           |                   |                                                    |                                       |
| ۶                 |           |                   |                                                    |                                       |
| 35cr              |           |                   | Way<br>Fron Do |                                       |
| 7<br>7<br>Wav     |           |                   | Sen Sen Dadial                                     | M3                                    |
| Fron<br>Sas       |           |                   | Velocity                                           |                                       |
| sor<br>ic<br>An   |           |                   | Spectro                                            |                                       |
| Mas<br>nifo       |           |                   |                                                    | M5                                    |
| ₹ An<br>gle<br>Mo | Sky       | Astrometric       |                                                    |                                       |
| nito<br>r         | Mappe     | Field CCDs        | motion in                                          |                                       |
|                   | r<br>CCDs |                   | 10 s                                               | M6                                    |

20 Jul 2011

ioa



S:





Nic Walton - GAIA/GREAT - VPHAS @ Herts

2

### The Challenge of Gaia transformational science





20 Jul 2011

Nic Walton - GAIA/GREAT - VPHAS @ Herts



### ... not so far away now ...



ioa

Nic Walton - GAIA/GREAT - VPHAS @ Herts

### **Gaia Image Gallery**

### http://www.rssd.esa.int/index.php?project=GAIA&page=Image\_gallery





This shows the expected coverage for a 5 year mission. Each location of the sky will be observed in multiple blocks of four observations - these spaced a t\_0, t\_0 + 106 mins, t\_0 + 6hrs, t\_0 + 6hrs + 106 mins, with these then being repeated 10 to 30 days later. This temporal coverage of the sky leads to opportunities to discover an characterise various transient objects. Credit: A Brown / ESA.

#### **Summary of Gaia Science Products**

- 10<sup>9</sup> stars
- 10<sup>6</sup> at V=12, 30x10<sup>6</sup> at V=15, 250x10<sup>6</sup> at V=18
- Sigma ~10µas V<12, 22µas V=15, 220µas V=20</li>
- + 25,000 stars/ deg<sup>2</sup> with max ~10<sup>6</sup> stars/ deg<sup>2</sup>
- 150x10<sup>6</sup> radial velocities
- Accurate stellar classification for all classes and types
- Recalibration of the distance scale
- Variability analysis for over 10<sup>8</sup> stars
- + 10,000 stellar masses with  $\sigma$  < 1%
- Extrasolar planets to 200pc
- 3x10<sup>5</sup> minor bodies of the solar system
- $\sim$ 5x1<sup>05</sup> QSOs + z + photometry, ICRF in the visible
- PPN gamma to ~ 2x10<sup>-6</sup>



20 Jul 2011

### End-of-life parallax errors



1. 6 < G < 12: bright-star regime (calibration errors, CCD saturation)

 12 < G < 20: photon-noise regime, with sky-background noise and electronic noise setting in around G ~ 20 mag





Nic Walton - GAIA/GREAT - VPHAS @ Herts

6

### **GREAT ESF RNP** Scientific Community Building

- Development led by team from GST and DPACE
  - Included science contributions from the respondees to the Sep 2008 expressions of interest call
- Funds conferences, workshops, exchanges, schools
- Key science remit inclusive across Gaia science
  - Origin, structure, evolution of the Milky Way
  - Stellar Astrophysics
  - Galactic Dynamics
  - Galactic Archaelogy
  - Star formation and evolution
  - Fundamental physics
  - Extrasolar planets and non single stars
  - Solar system
  - The IT data challenge







### **GREAT ESF Research Network Programme**

- Provides funds for the GREAT research network:
   Feb 2010 Jan 2015 with a budget of ~€750K
- The Programme provides financial support for the following activities:
  - Science meetings (workshops, conferences or schools) organised either by the Programme Steering Committee or following an open call for proposals
  - Grants for short and exchange visits awarded following an open call for applications
  - Publication of information brochures and leaflets, scientific books and meeting proceedings etc







### ESF RNP

- ESF networking programmes are 'Open'
  - Encouraged to involve the wider community
  - Ideal for the concept of including those that are not coapplicants in other network activities
- Period of call is science over 2010 2015
  - Thus, can factor in access to 'early' Gaia data releases
  - Access to Gaia science alert streams
  - Can also consider science programmes requiring preparatory work (theory, simulations, observational)
- Calls are published at http://www.great-esf.eu
  - Short visits can be proposed at any time, whilst for workshops/ conferences/ exchanges: two calls/year





าต



### **GREAT-ESF Meetings 2011** range of topics to be covered

**GREAT-ESF Workshop** Orbiting couples: "pas de deux" in the Solar System and the Milky Way, 10 - 12 October 2011, Paris Observatory, Paris, France

**GREAT-ESF Workshop** *The Interstellar Medium in Three Dimensions with Gaia*, 11 - 14 July 2011, The Lorentz Centre, Leiden University, Leiden, The Netherlands ( workshop website)

**GREAT-ESF Workshop** Stellar Atmospheres in the Gaia Era: Quantitative Spectroscopy and Comparative Spectrum Modelling, 23 - 24 June 2011, Free University Brussels (Vrije Universiteit Brussel - VUB), Campus Etterbeek, Brussels, Belgium ( workshop website)

GREAT PLENARY 4th Great Plenary Meeting, 21 - 23 Jun 2011, Brussels, Belgium ( Plenary website)

GREAT-ESF Workshop QSO Astrophysics, Fundamental physics, and Astrometric Cosmology in the

Gaia era, 6 - 9 June 2011, Faculty of Sciences, University of Porto, Porto, Portugal ( workshop website)

GREAT-ESF Summer School and Workshop Astrostatistics and Data Mining in Astronomical Databases, 30 May - 3 June 2011, La Palma, ( school website)

GREAT-ESF Workshop Asteroid dynamic and physical studies during and after the Gaia mission, 4 - 6 May 2011, Pisa, Italy ( workshop website)

**GREAT-ESF CONFERENCE** The Fundamental Cosmic Distance Scale: State of the Art and the Gaia Perspective, 3 – 6 May 2011, Osservatorio Astronomico di Capodimonte, Naples, Italy ( conference website)

GREAT-ESF CONFERENCE Assembling the puzzle of the Milky Way, 17 – 22 April 2011, Le Grand-Bornand, France ( conference website)

GREAT-ESF Workshop Gaia and the End States of Stellar Evolution, 11 - 14 April 2011, The University of Leicester, UK ( workshop website)

http://great.ast.cam.ac.uk/Greatwiki/GaiaScienceMeetings See this link also for the final reports from each meeting





# GREAT Initial Training Network

- FP7 Initial Training Network Proposal
  - 13 main nodes: IoA Cambridge, Leiden, Lund, Barcelona, Heidelberg, MPIA (Heidelberg), Leuven, Geneva, PKU (Beijing), CAUP (Porto), CNRS (Bordeau/Bescancon), INAF (Bologna, Padua), AMU (Poznan)
  - 19 Associate nodes (of which 4 are industrial partners)
  - €4.3M : Funds 17 Early Stage Researchers
  - **4 year duration**: 1 March 2011 28 February 2015
  - Much of the research relevant to GCDS and this meeting
- GREAT ITN complementary to GREAT ESF RNP
   Opportunity for joint networking activities
  - Kick-off meeting: 13-14 Apr 2011 in Cambridge





## The GREAT ITN: Project Goals



- Science Theme: Unravelling the Milky Way from the Galaxy to Asteroids
  - WP3: the origin and history of the milky way
  - WP4: the stellar constituents of the milky way
  - WP5: planetary systems, worlds near and far
  - WP6: grand challenges
- Increase the European potential in scientifically exploiting Gaia
- Develop multi-wavelength, multi-domain techniques incorporating information from Gaia
- Transfer best practice in the use of new IT techniques







- Community input into the data access design process
  - Via Great wiki: http://great.ast.cam.ac.uk/Greatwiki/GaiaDataAccess
- Opportunity to provide individual and GREAT WG input
  - Examples of science usage as to how the Gaia data might be used and how it will be accessed
- Input received will be used in the scoping and development of the Gaia data access and archive systems

A chance for EGAPS / VVV / GPS etc requirements



### **GREAT Working Groups**

### http://great.ast.cam.ac.uk/Greatwiki/CategoryWorkgroups

| Workgroup                       | co-facilitator      | co-facilitator             |
|---------------------------------|---------------------|----------------------------|
| WGA1GaiaModel                   | Céline Reylé        | Daisuke Kawata             |
| WGA2SurveyCensus                | GeorgeSeabroke      | ArnaudSiebert              |
| WGA3ChemicalTagging             | Sofia Feltzing      | Nicholas Walton            |
| WGA4LocalGroup                  | Vasily Belokurov    | Michele Bellazzini         |
| WGA5GaiaAlerts                  | Simon Hodgkin       | Gerry Gilmore              |
| WGA6GaiaExtragal                | Mary Kontizas       | tbd                        |
| WGA7NewStats                    | Will O'Mullane      | NicholasWalton             |
| WGA8DistanceScales              | Gisella Clementini  | Xavier Luri & Enzo Brocato |
| WGA9ISM                         | Rosine Lallement    | U. Munari & T. Zwitter     |
| WGB1OpenClusterYoungAssociation | AlessandroLanzafame | AntonellaVallenari         |
| WGB2StellarVariability          | Joris De Ridder     | Laurent Eyer               |
| WGB3BinariesAndMultipleSystems  | Dimitri Pourbaix    | Frederic Arenou            |
| WGB4StellarAtmospheres          | UlrikeHeiter        | Alex Lobel                 |
| WGB5MassiveStars                | Ronny Blomme        | Janet Drew                 |
| WGB6EndStatesOfStellarEvolution | DuncanFyfe          | Stefan Jordan              |
| WGC1ExoPlanets                  | Alessandro Sozzetti | Don Pollacco               |
| WGC2AstrometryReferenceFrame    | Mariateresa Crosta  | Géraldine Bourda           |
| WGC3Quasars                     | Sonia Anton         | Alexandre Andrei           |
| WGC4SolarSystem                 | Paolo Tanga         | Alberto Cellino            |



20 Jul 2011

Nic Walton - GAIA/GREAT - VPHAS @ Herts



14

### **GREAT Chemo-Dynamical Survey** an example GREAT WG initiative

- GREAT Chemo-Dynamical Survey concept
  - Outputs including theory and observational campaigns
  - GCDS Kick-off meeting held in Paris (Apr 2010)
    - http://great.ast.cam.ac.uk/Greatwiki/GreatCds/GcdsParisApr2010
- 8-m VLT/ FLAMES proposals: Gilmore & Randich
  - Gaia-ESO survey see http://www.gaia-eso.eu
  - 300 nights over 5 years from Jan 2012
- 8-m & 4-m initiatives instrumentation proposals
  - 4MOST WF spectrograph on VISTA (de Jong)
  - WEAVE WF spectrograph on WHT (Dalton)
  - MOONS near IR MOS on the VLT (Cirasuolo)





### **GREAT Chemo Dynamical Survey** Background & Rationale

- March 2009 GREAT meeting
  - http://www.ast.cam.ac.uk/GREAT/events/cam-mar09/cam-mar09.html
- Chemical Tagging Working Group
  - http://great.ast.cam.ac.uk/Greatwiki/WGA3ChemicalTagging
- Discussion identified need for High Resolution Spectroscopy
  - In context of Gaia: amount and type of data required
  - Key science drivers
  - Routes to obtain data
  - Need for associated theory





### **GCDS: Galactic Science Drivers** the fossil record of galaxy assembly: 1<sup>st</sup> stars to now

- relative importance of mergers and accretion in building the disk(s) and bulge
- chemo-dynamic structure of Galactic components
  - interface between disk, bulge/bar, halo
  - importance of radial mixing in the disk(s)
  - ancient dissolved and surviving substructures, streams
- fossil record of chemical evolution of stellar pops
  - chemical signature of ancient accretions
  - properties of metal-poor popIII stars
- evolutionary history of stellar components
  - IMF, SFH, tagging the chemical development
  - the role of star clusters



detailed chemo-dynamics of surviving satellites 20 Jul 2011



17

## Milky Way Halo

38

- Studies of the inner and outer halos
  - How different are they (Corollo et al 2010 c.f Schronrich, Asplund, Casagrande 2010)?
  - Matching with models

Lambda CDM models predict large-scale substructure in L<sub>\*</sub> galaxies like M31 and MW

Bullock & Johnston 2005

300 x 300 kpc

30







Nic Walton - GAIA/GREAT - VPHAS @ Herts

## Galaxy substructure and satellite accretion



Belokurov et al (2006 etc) – this figure is the SDSS DR7 release. This shows turnoff stars (selected by colour) – where blue is closer, red further





### The Galactic Disk

• Evidence for Mixing

oa

- Radial migration due to transient spiral arms, impact of bars
- Metallicity variations, distributions
- Metallicity distribution function of young and old stars with  $R_{gal} \rightarrow$  test of radial migration (c.f. Schönrich & Binney, 2009)







Nic Walton - GAIA/GREAT - VPHAS @ Herts

21

### **Building (parts of) the Halo**



- Fossil record from chemistry
- 0.2 dex required
- R=20,000 and S/N ~50 required





ioa



### The Initial GCDS Survey Concept see http://great.ast.cam.ac.uk/Greatwiki/GreatCds

- Low Resolution Component
  - R=5000 Chemo-Kinematics 5 x 10<sup>6</sup> stars
    - Map the thick/thin Disk / Halo / Bulge components
    - Radial velocities to  $\sim 2 \text{ kms}^{-1}$  and [Fe/H] to 0.2 dex
- High Resolution: (< 1kms<sup>-1</sup> and ~0.05 dex in [Fe/H])
  - good wavelength coverage eg. 4800-6800A; abundances: light elements, alpha-elements, r- s-process and heavy elements
  - $R=20000 Halo: 5 \times 10^4$  (Chemical-Labelling)
  - R=20000 Bulge: 5 x  $10^4$
  - R=40000 Disk:  $2 \times 10^5$  (Chemical-Tagging)
    - Field Disk & Open clusters



AMBITIOUS SCALE





### **GREAT Chemo-Dynamical Survey** GCDS Kick-off meeting (27 Apr 2010)

http://great.ast.cam.ac.uk/Greatwiki/GreatCds/GcdsParisApr2010

- The Science Experiments
  - SE1: Mass Distribution of the Galaxy
  - SE2: Galaxies formation and evolution traced by chemistry
  - SE3: Clusters and star formation and evolution
  - SE4: Additional and Legacy Science
- Development of these proceeding see
  - http://camd08.ast.cam.ac.uk/Greatwiki/GreatCds/GcdsSe1
  - http://camd08.ast.cam.ac.uk/Greatwiki/GreatCds/GcdsSe2
  - http://camd08.ast.cam.ac.uk/Greatwiki/GreatCds/GcdsSe3
  - http://camd08.ast.cam.ac.uk/Greatwiki/GreatCds/GcdsSe4

### THE INCLUSIVE ELEMENT of GCDS





### GCDS: status updates – to Dec 2010

- May 2010: WHT spectro upgrade development
- July 2010: ESO issued call for large (300 night) spectroscopic surveys (LoI deadline 15 Oct 2010)
- July 2010: ESO issued call for spectroscopic instrument upgrades
- The GREAT community involved in these
  - Response to the ESO VLT survey call (Gilmore & Randich)
  - 4-m MOS spectrographs for WHT (WEAVE: Dalton) and VISTA (4mMOSST: De Jong) (with associated surveys)
  - 8-m VLT (FLAMES-IR: includes Bonifacio)
- Nice GCDS Science Workshop (Nov 2010)
  - http://cassiopee.oca.eu/spip.php?article324/





oa

### **GCDS-MW: Key Drivers**

The Gaia-ESO survey: Galactic Astrophysics via VISTA Imaging, Gaia Astrometry, and Eso SpectrOscopy

- Combines key cases from:
  - SE1: Mass Distribution of the Galaxy
  - SE2: Galaxies formation and evolution traced by chemistry
- Key aims: kinematic studies of the halo, chemistry of the disk
  - Quantify thick disk and halo abundance and kinematic gradients
  - Distribution functions due to the inner bar and spiral arms
- Determine the relative importance of assembly and accretion
- Bulge-disk interface: (secular) origin of the thick disk
- Halo-disk interface: (merger) origin of the halo & thick disk
- Direct constraints on the disk and halo potential
- LoI submitted to ESO (Oct 2010) PI: Gilmore





ioa

### **GCDS-OC: Key Drivers** Open Star Clusters: the path from molecular clouds to the MW disc population

- Key science from
  - SE3: Clusters and star formation and evolution
- Key aims: kinematic and chemical studies of a large sample of Open Clusters and cluster members to:
  - understand how clusters form; evolve, dissolve, and populate the Milky Way
  - calibrate complex physics that affect stellar evolution;
  - measure the Galactic metallicity gradient at different ages with unprecedented accuracy, thereby setting constraints on models of disc formation
- LoI submitted to ESO (Sep 10): PI Randich





### Gaia-ESO Survey http://great.ast.cam.ac.uk/GESwiki

- ESO public survey
   Public data products
- Co lead: Gilmore/ Randich
- 250 co-Is: pan-european
- 300 nights over 5 years
  - Starts Jan 2012
  - Overlaps: Gaia 1<sup>st</sup> releases
- 10<sup>5</sup> Giraffe (R~20K) spectra
- $10^4$  UVES (R~47K) spectra

Co-PIs: Gerry Gilmore<sup>1370</sup>, Sofia Randich<sup>1336</sup> CoIs: M. Asplund<sup>1490</sup>, J. Binney<sup>1611</sup>, P. Bonifacio<sup>1588</sup>, J. Drew<sup>1668</sup>, S. Feltzing<sup>1473</sup>, A. Ferguson<sup>1649</sup> R. Jeffries<sup>1132</sup>, G. Micela<sup>1344</sup>, I. Negueruela<sup>7609</sup>, T. Prusti<sup>1278</sup>, H-W. Rix<sup>1489</sup>, A. Vallenari<sup>1343</sup> D. Aden<sup>1473</sup>, L. Affer<sup>1344</sup>, J-M. Alcala<sup>1340</sup>, E. Alfaro<sup>1392</sup>, C. Allende Prieto<sup>1393</sup>, G. Altavilla<sup>7530</sup> J. Alves<sup>1893</sup>, T. Antoja<sup>1422</sup>, F. Arenou<sup>1588</sup>, C. Argiroffl<sup>1883</sup>, A. Asensio Ramos<sup>1393</sup>, C. Babusiaux<sup>1588</sup> C. Bailer-Jones<sup>1489</sup>, L. Balaguer-Nunez<sup>1821</sup>, B. Barbuy<sup>1828</sup>, G. Barisevicius<sup>1376</sup>, D. Barrado y Navascues<sup>1088</sup>, C. Battistini<sup>1473</sup>, I. Bellas-Velidis<sup>1555</sup>, M. Bellazzini<sup>1329</sup>, V. Belokurov<sup>1370</sup>, T. Bensby<sup>1473</sup>, M. Bergemann<sup>1490</sup>, G. Bertelli<sup>1343</sup>, K. Biazzo<sup>1335</sup>, O. Bienayme<sup>1582</sup>, J. Bland-Hawthorn<sup>2044</sup>, R. Blomme<sup>1650</sup>, C. Boeche<sup>2112</sup>, S. Bonito<sup>1344</sup>, S. Boudreault<sup>1242</sup>, J. Bouvier<sup>1449</sup>, A. Bragaglia<sup>1337</sup>, I. Brandao<sup>1200</sup>, A. Brown<sup>1716</sup>, J. de Brujine<sup>1278</sup>, M. Burleigh<sup>1244</sup>, J. Caballero<sup>8545</sup> E. Caffau<sup>2112</sup>, F. Calura<sup>1197</sup>, R. Capuzzo-Dolcetta<sup>1857</sup>, M. Caramazza<sup>1344</sup>. G. Carraro<sup>1261</sup> L. Casagrande<sup>1490</sup>, S. Casewell<sup>1244</sup>, S. Chapman<sup>1370</sup>, C. Chiappini<sup>1135</sup>, Y. Chorniy<sup>1376</sup>, N. Christlieb<sup>1982</sup>, M. Cignoni<sup>7530</sup>, G. Cocozza<sup>7530</sup>, M. Colless<sup>1017</sup>, R. Collet<sup>1490</sup>, M. Collins<sup>1489</sup>, M. Correnti<sup>1329</sup>, E. Covino<sup>1340</sup>, D. Crnojevic<sup>1649</sup>, M. Cropper<sup>1242</sup>, M. Cunha<sup>1200</sup>, F. Damiani<sup>1344</sup> M. David<sup>1233</sup>, A. Delgado<sup>1392</sup>, S. Duffau<sup>2112</sup>, S. Van Eck <sup>1358</sup>, B. Edvardsson<sup>6181</sup>, H. Enke<sup>1135</sup> K. Eriksson<sup>2079</sup>, N.W. Evans<sup>1370</sup>, L. Eyer<sup>1377</sup>, B. Famaey<sup>1582</sup>, M. Fellhauer<sup>1824</sup>, I. Ferreras<sup>1242</sup>,
 F. Figueras<sup>1821</sup>, G. Fiorentino<sup>1422</sup>, E. Flaccomio<sup>1344</sup>, C. Flynn<sup>2044</sup>, D. Folho<sup>1200</sup>, E. Franciosini<sup>1335</sup>,
 P. Francois<sup>1588</sup>, A. Frasca<sup>1341</sup>, K. Freeman<sup>1139</sup>, Y. Fremat<sup>1650</sup>, B. Gaensicke<sup>1241</sup>, J. Gameiro<sup>1200</sup>, F. Garzon<sup>1393</sup>, S. Geier<sup>5677</sup>, D. Geisler<sup>1824</sup>, B. Gibson<sup>1197</sup>, A. Gomboc<sup>1995</sup>, A. Gomez<sup>1588</sup> C. Gonzalez-Fernandez<sup>7809</sup>, J. Gonzalez Hernandez<sup>1393</sup>, E. Grebel<sup>2112</sup>, R. Greimel<sup>1423</sup>, M. Groenewegen<sup>1650</sup>, F. Grundahl<sup>1368</sup>, M. Guarcello<sup>1312</sup>, B. Gustafsson<sup>2079</sup>, P. Hadrava<sup>1116</sup>, D. Groenewegen<sup>1660</sup>, F. Grundahl<sup>1569</sup>, M. Guarcello<sup>1312</sup>, B. Gustafsson<sup>1205</sup>, P. Hadrava<sup>1148</sup>, D. Hadzidimitriou<sup>1559</sup>, N. Hambly<sup>1649</sup>, P. Hammersley<sup>1258</sup>, C. Hansen<sup>2112</sup>, M. Haywood<sup>1588</sup>, U. Heber<sup>5677</sup>, U. Heiter<sup>6181</sup>, A. Helmi<sup>1422</sup>, G. Hensler<sup>1893</sup>, A. Herrero<sup>1393</sup>, V. Hill<sup>1591</sup>, S. Hodgkin<sup>1370</sup>, N. Huelamo<sup>8545</sup>, A. Huxor<sup>2112</sup>, R. Ibata<sup>1582</sup>, M. Irwin<sup>1370</sup>, R. Jackson<sup>1132</sup>, R. de Jong<sup>1135</sup>, P. Jonker<sup>1660</sup>, S. Jordan<sup>2112</sup>, C. Jordi<sup>1821</sup>, A. Jorissen<sup>1358</sup>, D. Katz<sup>1588</sup>, D. Kawata<sup>1242</sup>, S. Keller<sup>1139</sup>, N. Kharchenko<sup>1135</sup>, R. Klement<sup>1489</sup>, A. Klutsch<sup>1803</sup>, J. Knude<sup>1966</sup>, A. Koch<sup>1244</sup>, O. Kochukhov<sup>6181</sup>, M. Kontizas<sup>1560</sup>, S. Koposov<sup>1370</sup>, A. Korn<sup>6181</sup>, P. Koubsky<sup>1116</sup>, A. Lanzafame<sup>1874</sup>, R. Lallement<sup>1588</sup>, P. de Laverny<sup>1591</sup>, F. van Leeuwen<sup>1370</sup>, B. Lemasle<sup>1422</sup>, G. Lewis<sup>2044</sup>, K. Lind<sup>1490</sup>, H.P.E. Lindstrom<sup>1966</sup>, J. Lopez santiago<sup>1803</sup>, P. Lucas<sup>1668</sup>, H. Ludwig<sup>2112</sup>, T. Lueftinger<sup>1893</sup>, L. Magrini<sup>1355</sup>, J. Maiz Apellaniz<sup>1392</sup>, J. Maldonado<sup>1803</sup>, G. Marconi<sup>1261</sup>, G. Matijevic<sup>1995</sup>, R. McMahon<sup>1370</sup>, S. Messina<sup>1341</sup>, M. Meyer<sup>1377</sup>, A. Miglio<sup>1359</sup>, S. Mikolaitis<sup>1376</sup>, I. Minchev<sup>1135</sup>, D. Minniti<sup>1801</sup>, A. Moitinho<sup>8848</sup>, N. Molawi<sup>1583</sup>, Y. Momany<sup>1281</sup>, L. Monaco<sup>1281</sup>, M. Montalto<sup>1200</sup>, M. Montalto<sup>1200</sup> M.J. Monteiro<sup>1200</sup>, R. Monier<sup>5695</sup>, D. Montes<sup>1803</sup>, A. Mora<sup>1350</sup>, E. Moraux<sup>1449</sup>, T. Morel<sup>1359</sup>, A. Morino<sup>1490</sup>, N. Mowlavi<sup>1583</sup>, A. Mucciarelli<sup>7530</sup>, U. Munari<sup>1343</sup>, R. Napiwotzki<sup>1668</sup>, N. Nardetto<sup>1824</sup>, T. Naylor<sup>1130</sup>, G. Nelemans<sup>1628</sup>, S. Okamoto<sup>1616</sup>, S. Ortolani<sup>6311</sup>, G. Pace<sup>1200</sup> F. Palla<sup>1335</sup>, J. Palous<sup>1116</sup>, E. Pancino<sup>1337</sup>, R. Parker<sup>1377</sup>, E. Paunzen<sup>1893</sup>, J. Penarrubia<sup>1828</sup>, I. Pillitteri<sup>1312</sup>, G. Piotto<sup>1343</sup>, H. Posbic<sup>1588</sup>, L. Prisinzano<sup>1344</sup>, E. Puzeras<sup>1376</sup>, A. Quirrenbach<sup>2112</sup>,
 S. Ragaini<sup>7530</sup>, D. Ramano<sup>1337</sup>, J. Read<sup>1377</sup>, M. Read<sup>1649</sup>, A. Recio-Blanco<sup>1591</sup>, C. Reyles<sup>1592</sup>,
 N. Robichon<sup>1588</sup>, A. Robin<sup>1592</sup>, S. Roeser<sup>2112</sup>, F. Royer<sup>1588</sup>, G. Ruchti<sup>1490</sup>, A. Ruzicka<sup>1116</sup>, S. Rvan<sup>1668</sup>, N. Ryde<sup>1473</sup>, G. Sacco<sup>1645</sup>, N. Santos<sup>1200</sup>, J. Sanz Forcada<sup>1456</sup>, L.M. Sarro Baro<sup>5688</sup> L. Sbordone<sup>1129</sup>, E. Schilbach<sup>2112</sup>, S. Schmeja<sup>2112</sup>, O. Schnurr<sup>1135</sup>, R. Schoenrich<sup>1490</sup>, R-D. Scholz<sup>1135</sup>, G. Seabroke<sup>1242</sup>, S. Sharma<sup>2044</sup>, G. De Silva<sup>1017</sup>, R. Smiljanic<sup>1258</sup>, M. Smith<sup>1616</sup> E. Solano<sup>8545</sup>, C. Soubiran<sup>1592</sup>, S. Sousa<sup>1200</sup>, A. Spagna<sup>1346</sup>, M. Steffen<sup>1135</sup>, M. Steinmetz<sup>1135</sup> B. Stelzer<sup>1344</sup>, E. Stempels<sup>6181</sup>, H. Tabernero<sup>1803</sup>, G. Tautvaisiene<sup>1376</sup>, F. Thevenin<sup>1591</sup>, J. Torra<sup>1821</sup>, M. Tosi<sup>1337</sup>, E. Tolstoy<sup>1422</sup>, C. Turon<sup>1588</sup>, M. Walker<sup>1312</sup>, N. Walton<sup>1370</sup>, J. Wambsganss<sup>2112</sup> C. Worley<sup>1591</sup>, K. Venn<sup>2061</sup>, J. Vink<sup>1111</sup>, R. Wyse<sup>1419</sup>, S. Zaggia<sup>1343</sup>, W. Zeilinger<sup>1893</sup>, M. Zoccali<sup>1801</sup>, J. Zorec<sup>1361</sup>, D. Zucker<sup>1477</sup>, T. Zwitter<sup>1995</sup>







## **Gaia-ESO Survey Components**

- Bulge Survey: K giants/ Red Clump (I=15)
  Fe-peak (Fe, Cr, Mn, Co, Ni) α (Mg, Si, Ca, Ti) p-capture (sc, V)
- Halo/ thick disk survey: r=17-18 F stars (thick disk/ halo) and K giants for outer disk/ halo streams
  - Probe gravitational potential of the galaxy
- Thin disk dynamics: rad vels to I-19: spiral arm/ bar dynamics
- Solar Neighbourhood: UVES obs of FG stars < 2kpc
- Open Clusters: young (velocity fields to <0.5 kms<sup>-1</sup> for evolution history) to old (cluster destruction theories from kinematics, mass functions)





# Survey design and strategy. 1. Field stars Slide: Sofia Randich

Bulge survey targets – technically easy to do.

CHALLENGE: how to handle/model/select for the extreme biases due to red clump evolution?

bulge,  $(\alpha, \delta) = (285, -43)$ 10 12 EULGE RGB 14 ¥ 16 18 20 0.0 0.2 0.6 1.0 1.2 0.8 J-K

VHS bulge data, b=40deg

Field target strategy:

Fix a box in the CMD with thick disk & halo turnoff

Figures show sdss vs VHS

Select thick disk/halo locus (left), Implement in VHS (right)



ioa

### **Survey design – open clusters**

- Precise abundances and kinematics for a large samples of OCs – nearby (increased impact with Gaia) and far (for abundance gradients)
- 100 OCs in all phases of evolution (~1Myr to ~10 Gyr) from WEBDA database, Dias et al (2010 version), Kharchenko (2005)



# Slide: Sofia RandichSet-ups

- Limiting mag. (R): 16.5 (UVES), 19 (Giraffe)
- UVES: CD3 -520/580 (416-617/475-678 nm) for hot/cool stars; S/N > 60-70 → precise abundances
- Giraffe: *Cluster/field stars:* HR03/05A /06/14A (403-476, 631-670 nm) for hot stars; HR10/15N/21 (534-562; 647-679; 848.4-900) for cool stars: Teff/gravity indicators, Hα, Li, Fe I and II lines, Ca IR triplet, a few other el. lines;
  - S/N>10-30;  $\rightarrow$  RVs, stellar parameters/characteristics, [Fe/H], a few [X/Fe] (Ca, Ti, Mg at least)

### **Gaia-ESO survey accuracies**

- Radial velocities: 0.1 1 kms<sup>-1</sup> for cool stars, 5 kms<sup>-1</sup> for hot stars
- Rotation: 10%
- T<sub>eff</sub>: 50-200 K
- Log g: 0.15 0.3 dex
- [Fe/H], [X/Fe]: ~0.1 (UVES), ~0.2 (Giraffe)
- Average [Fe/H], [X/Fe] for the clusters to  $\sim 0.03$  dex





## **Role of VPHAS/ IPHAS in Gaia-ESO**

- Provision of supporting optical data: bulge and plane
  - Especially relevant for the open cluster, thin disk and bulge science themes
  - Possibility to accelerate VPHAS observations of OCs fields
- Added value science combinations of imaging/ spectral data
- Involvement of people
  - e.g. Drew on Gaia-ESO Steering Group
  - Involvement of many others plenty of work to do

http://www.gaia-eso.eu

http://great.ast.cam.ac.uk/GESwiki/GESHome

Plus email to Gerry Gilmore/ Sofia Randich for access



20 Jul 2011



### Conclusions

- Gaia set to revolutionise our understanding of the nearby Universe
  - ground based spectroscopy adds significant value
- The European galactic astronomy community well organised through the GREAT network
- Ambitious survey programmes underway
  - Gaia-ESO survey
- New build instrumentation understudy
  - MOONS, 4MOST, WEAVE

More on the above in presentations at the GREAT Plenary – June 2011: http://great.ast.cam.ac.uk/Greatwiki/GreatMeet-20110621



