First results of the International Deep Planet Survey: frequency of wide-orbit massive planets around A-stars

Arthur Vigan

In collaboration with J. Patience, C. Marois, M. Bonavita, R. J. De Rosa, B. Macintosh, I. Song, R. Doyon, B. Zuckerman, D. Lafrenière and T. Barman

Motivations

- Previous surveys focused on Solar-type stars (Masciadri et al. 2005; Lafrenière et al. 2007; Kasper et al. 2007; Leconte et al. 2010; Chauvin et al. 2007)
- Very few detections of sub-stellar companions
 → 2M 1207, AB Pic, IRXS 1609, CT Cha, GQ Lup, ...

Chauvin et al. (2004)

Neuhauser et al. (2005)

Lafrenière et al. (2008)

- Baraffe et al. (2003), All Stars
- 2012: few surveys focused on other types
 - very massive stars (Janson et al. 2011)
 - low-mass stars (Delorme et al. 2012)

Main conclusion: planets are rare around FGKM stars

Mind the Gap - University of Hertfordshire - 02/06/2013

Motivations

Recent breakthrough discoveries around young A stars

HR 8799 - 30 Myr

Marois et al. (2008, 2010)

β Pictoris - 12 Myr

Lagrange et al. (2010)

Fomalhaut - 100-300 Myr

Kalas et al. (2008, 2013)

HD 95086 - 17 Myr

Rameau et al. (2013)

Recent discoveries of RV planets around old A stars
 Lick and Keck subgiant surveys
 (Johnson et al. 2010, 2011; Bowler et al. 2010)

strong correlation between stellar mass and planet mass

Sample selection

• Our sample includes a total of 42 stars:

- a new set of young (median age 100 Myr), nearby (d \leq 85 pc) A-stars (+4 early F)
- A-stars previously observed in planet-search surveys

Sample selection

- Selection of the new set of targets:
 - initial fit to the Pleiades A-stars (125 Myr)
 - search for published ages in initial selection

Observations

	VLT/NaCo	Gemini/NIRI
Targets	18	20
Filters	Ks	K' + CH4short
Periods	2009-2012	2007-2010
Pixel size	~13.20 mas	~21.4 mas
FoV	~13.5"	~22"
Obs. mode	Saturated imaging Angular differential imaging (ADI)	

- typical field of view rotation = 30°
- conditions from poor to excellent

Mind the Gap - University of Hertfordshire - 02/06/2013

Data reduction and analysis

- standard data reduction
- frame registration using Moffat profile fitting
- frame selection based on encircled energy and maximal flux
- unsaturated PSF used for normalization
- analysis of the data sets with LOCI (Lafrenière et al 2007):
 - $N_{\delta} = 0.75$ FWHM
 - $N_A = 300-500$ PSF footprints

Companion candidates

- candidates identified by eye on images and SNR maps
- ~50 candidates \geq 5 σ around 22 of the targets
- second epoch for candidates with separation $\leq 320 \text{ AU}$
- no new substellar companions

8

Mind the Gap - University of Hertfordshire - 02/06/2013

Detection limits

- noise in annuli of increasing radius $\rightarrow 5\sigma$ detection limits
- normalisation by unsaturated PSF obtained with neutral density (NaCo) or narrow-band filters (NIRI)

Statistical analysis

- What statistical properties can be inferred from the data?
- Previous surveys have used non-detections to:
 - set upper limits on the fraction of stars with planets
 - set constraints on the population of planets at wide separation
- Now that there are detections: what can we say?

Statistical analysis: general approach

- Monte Carlo simulations → MESS (Bonavita et al. 2012)
 - generate lots of planets on a grid of mass/semi-major axis
 - random other orbital parameters
 - check detectability against detection limits
 - "probability of detection" map for each target

Choice of evolutionary models

- only COND (Baraffe et al. 2003) are going deep enough
- COND are in agreement with data in Ks, but less in CH4s
- main effect: underestimation of detectable masses, increasing with obs. depth (i.e. with angular separation)

Wide-orbit planets frequency

 $f \in [5.9\%, 18.8\%]$ at 68% confidence • 3 $M_{Jup} \le mass \le 14 M_{Jup}$

• 5 AU \leq a \leq 320 AU

Result confirmed by Rameau et al. (2013) In agreement with NICI survey (Nielsen et al. 2013)

Constraints on wide-orbit planets population

- Extrapolation of RV survey results
- Solar-type stars \rightarrow Cumming et al. (2008) measure f = 10.5%for 0.3-10 M_{Jup} planets with P < 1826 days $\frac{dN \propto M^{-1.31}dM}{dN \propto a^{-0.61}da}$
- Early-type stars (old stars)
 - → Johnson et al. (2010) measure f = 11 ± 2% for 0.5-14 M_{Jup} in 0.1-3.0 AU
 - → Bowler et al. (2010) bring some constraints on α and β

Constraints on wide-orbit planets population

- MC simulations with populations drawn from powerlaws
- assumed frequency f = 11 ± 2% in 0.5-14 M_{Jup} and 0.1-3.0 AU (Johnson et al. 2010)

values not in agreement with RV constraints from Bowler et al.

- different planet population at wide orbit?
- → population cannot be described by a single powerlaw?

Mind the Gap - University of Hertfordshire - 02/06/2013

Arthur Vigan - University of Exeter/ LAM

Conclusions

- survey of 42 A and early-F stars
- data from NaCo and NIRI analysed with LOCI
- Monte Carlo simulations for the statistical analysis
- wide-orbit planet frequency f \in [5.9%, 18.8%] @ 68% confidence
 - 3 MJup \leq mass \leq 14 MJup 10 AU \leq a \leq 320 AU
 - value confirmed by Rameau et al. (2013)
- constraints on the population show differences with RV studies

Thanks for your attention!

