Long term multicolour photometry of Luhman-16

Rachel Street & BJ Fulton, LCOGT

Aleks Scholz, Dublin Institute for Advanced Studies

Keith Horne, Christiane Helling, Moira Jardine University of St. Andrews

Brown Dwarf Binary in the Solar Neighbourhood

• WISE J1049-0053=Luhman16 [Cutri et al. 2012]

• L7.5 primary + T0.5 secondary, close to the L/T transition [Luhman et al. 2013] [Burgasser et al. 2013]

 Quasi-periodic variability in IR photometry Amp ~11% P=4.87 hrs [Gillon et al. 2013]

Weather?

Variability in Brown Dwarfs

Convection in troposphere drives break-up of clouds, leading to depletion of condensates

 \rightarrow Predicted IR photometric variability observed in several cases

Variability in optical bands less commonly observed (fainter) but can place limits on models of condensates in atmosphere.

 \rightarrow Need for optical timeseries photometry

 \rightarrow Short quasi-periodicity necessitates continuous monitoring ideally over a few rotation cycles ~15hrs or more

Global Robotic Telescope Network (Southern hemisphere branch)

Cerro Tololo Chile 3 x 1m telescopes

Sutherland, South Africa 3 x 1m telescopes

Siding Spring Australia 2 x 1m telescopes 1 x 2m telescope

Clusters of telescopes All 1ms equipped with 15'x15' SBIG imager Identical set of 15 filters

Coordinated observations:

Multiple telescopes at same site: simultaneous SDSS-i and Pan-STARRS-z Multiple sites: extended timeseries photometry up to ~15hrs at a stretch

Began 2013 April 11, continued until target set Included several intensive stints ~2-3days.

Data from 6 cameras, two colours Overlapping but not precisely simultaneous 12 datasets reduced with aperture photometry separately to apply correct gain/read noise characteristics.

Combining Lightcurves

Combining data from different telescopes non-trivial Typical approaches:

- * Supernovae: low cadence (1/d) observations, plenty of time for standards
- * Microlensing: high cadence obs fit to initial model, then iterated

Luhman 16: Intensive observations – no/limited time for calibration standards Quasi-periodic, unknown variability – no model to fit Simultaneous observations from multiple telescopes at the same site and different sites

Combining Lightcurves

Explored a number of techniques for deriving differential photometry, e.g.: Kepler Presearch Data Conditioning [Stumpe et al. 2012,

> Trend Filtering Sys-Rem Detrending

Concerns:

- Work best with wide fields and a very large sample of stars

- Care required to avoid suppression of amplitude of target variability

[Stumpe et al. 2012, Smith et al. 2012] [Kovacs et al. 2005] [Mazeh et al. 2007]

Combining Lightcurves

Explored a number of techniques for deriving differential photometry, e.g.: Kepler Presearch Data Conditioning [Stumpe et al. 2012

> Trend Filtering Sys-Rem Detrending

Solution:

- Two independent reductions
- Combined ensemble photometry derived from independently written algorithms
- Extensive cross-checking performed to confirm lightcurve features and exclude instrumental artifacts.

[Stumpe et al. 2012, Smith et al. 2012] [Kovacs et al. 2005] [Mazeh et al. 2007]

Final Lightcurve

5

net

Final Lightcurve

Amplitude range: 0.1mag in SDSS-i and Pan-Starrs-Z

Little phase offset observed

Periodicity Analysis

• ANOVA algorithm

[Schwarzenberg-Czerny 1999]

 Applied to whole Pan-STARRS-Z lightcurve → P=4.93±0.008hrs

Changes in Periodicity

 Applied to longest continguous lightcurve sections Section 1: 2013 April 18-21 P = 7.0 ± 1.6 hrs

Changes in Periodicity

- Applied to longest continguous lightcurve sections
- Section 2: 2013 April 24-26
 P = 5.20±0.14hrs

Consistent over ~day timescales

Changes in Morphology

3 days

Summary and Future Work

Extended timeseries in SDSS-I, Pan-STARRS-Z – 41days

Amplitude of variation ~0.1mag in both bands, similar to IR Little phase difference between the bands

Changes in morphology can occur rapidly, T~rotation period.

Average period 4.93±0.008hrs but can be up to ~7hrs.

 \rightarrow suggests cloud-like features, evolving rapidly. \rightarrow changing latitude?

LCOGT Southern Ring 1m network now complete: 24hr coverage

