NON-EQUILIBRIUM ION-NEUTRAL CHEMISTRY BETWEEN BROWN DWARFS AND EXOPLANETS

Universiteit Leiden

Paul B Rimmer (University of St Andrews) Christiane Helling (University of St Andrews) Catherine Walsh (QUB, Leiden Observatory)

HOW TO MODEL SUBSTELLAR ATMOSPHERES: THE CHEMICAL KINETICS APPROACH

Wednesday, 20 November 13

CHEMICAL KINETICS IS NECESSARY

- CO and CH₄ become vertically quenched. (Saumon et al. 2006)
- Atomic species, C_2H_2 and HCN are enhanced by photodissociation chemistry. (Moses et al. 2011)
- Neither photodissociation nor vertical quenching can be treated with equilibrium or perturbation techniques.
- A chemical kinetics approach is necessary, either:
 - Using a robust rate network, accounting at least for all equilibrium formation and destruction pathways. (e.g. Venot et al. 2012, Moses et al. 2011)
 - In lieu of such techniques, dominant formation and destruction pathways can be used to estimate the effects of, e.g., chemical quenching (Bilger et al. 2013).

Mind the Gap - Brown Dwarfs and Exoplanets

What about us?

IONS AS A "PROBE" OF UPPER-ATMOSPHERIC COMPOSITION

- H₃⁺ is directly connected to the H₂ and the cosmic ray ionization rate. This makes it an excellent probe in its own right. (Harris et al. 2004)
- Recombination with its electron is difficult in such a weakly ionized plasma ($f_e = 10^{-7}$)
- H₃⁺ destroyed in two dominant ways:
 - $H_3^+ + CO \longrightarrow HCO^+ + H_2$
 - $H_3^+ + CH_4 \longrightarrow CH_5^+ + H_2$

Model Substellar Atmosphere

Chemical Kinetics

+

+

Ion-Neutral Chemistry

(No kinetics network for hydrogen-rich atmospheres accounts for ion-neutral chemistry!)

PARTS OF A GIANT GAS PLANET'S ATMOSPHERE

JUPITER-LIKE PLANET "BESPIN"

AN HR 8799 c-LIKE "PLANET": "HOTH"

Mind the Gap - Brown Dwarfs and Exoplanets

~40 AU

HD 209458 b-LIKE PLANET "OSIRIS"

OUR ION-NEUTRAL NON-EQUILIBRIUM NETWORK

- Over 100 species
- Up to C2H6
- Includes Cations, some Anions
- Treats atmospheric mixing
- Cosmic rays via atmospheric transport model
- Analytic radiative transfer

- Over 2000 Reactions
- Reversible: Neutral-Neutral, Three Body, Ion-Neutral
- Combustion Reactions and Capture Reactions
- Non-Reversible: Photodissociation, Photoionization, Cosmic Ray Ionization

JUPITER-LIKE PLANET

10⁻⁷

10⁻⁶

10⁻⁵

10⁻⁴

10⁻³

10⁻²

p [bar]