

NO GAP BUT LOCAL MINIMA

Maddalena Reggiani

Cwn dwatt

Michael R. Meyer, Sascha Quanz, A. Vigan, G. Chauvin, & NaCo-LP collaboration H Avenbaus, A. Amara, F. Meru, D. Mawet, J. Girard, O. Absil, J Milli, C. Gonzales, M. Osorio, G. Anglada

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Credit: ESO

What's the problem?

STELLAR COMPANIONS

PLANETS

Period distribution

(Ragbavan et al. 2010)

Period distribution

(Cumming et al. 2008)

What's the problem?

STELLAR COMPANIONS

PLANETS

(Ragbavan et al. 2010)

(Cumming et al. 2008)

Why do we care?

Different star/planet formation mechanisms predict different companion properties

STELLAR REGIME

SUB-STELLAR REGIME

TIDAL CAPTURE	M2 is chosen randomly from the IMF (McDonald & Clarke 1993)	CORE FRAGMENTATION	0.01/0.003 < q <1 (Boss 1988, Boyd e3 Whitworth 2005)
CORE FRAGMENTATION	Accretion tend to equalize masses (Bonnel 1994, Whitworth et al. 1995, Bate 2000)	DISK FRAGMENTATION	0.001 < q <0.2 (Stamatellos et al. 2011)
CAPTURE IN DISPERSING CLUSTERS	Different CMRD for wide binaries (Kouwenboven et al. 2010, Moeckel e ³ Bate 2010)	CORE ACCRETION	q < 0.001 <i>(Kley 2000)</i>

The CMF as a function of primary star mass and separation is key to a complete understanding of star, BD and planet formations.

Stellar CMRD

• the CMRDs for M, G, A primaries are inconsistent with the IMF

• they are consistent with each other

• no evidence of dependence of the CMRD on separation

Evidences for a "universal" CMRD

(Reggiani & Meyer 2011)

TIDAL CAPTURE	M₂ is chosen randomly from the IMF (McDonal∂ e³ Clarke 1993)
CORE FRAGMENTATION	Accretion tend to equalize masses (Bonnel 1994, Whitworth et al.
CAPTURE IN DISPERSING CLUSTERS	Different CMRD for wide binaries (Kouwenboven et al. 2010,

Combined CMRD for M, G, and A primaries

Maximum likelihood fit: $\partial N/\partial q \propto q^{\alpha}$ with $\alpha = 0.25 \pm 0.29$ (Reggiani & Meyer 2013)

Stellar CMRD

• the CMRDs for M, G, A primaries are inconsistent with the IMF

• they are consistent with each other

• no evidence of dependence of the CMRD on separation

Evidences for a "universal" CMRD

(Reggiani & Meyer 2011)

TIDAL CAPTURE	M ₂ is chosen randomly from the IMF (McDonald eð Clarke 1993)
CORE FRAGMENTATION	Accretion tend to equalize masses (Bonnel 1994, Whitworth et al.
CAPTURE IN DISPERSING CLUSTERS	Different CMRD for wide binaries (Kouwenboven et al. 2010,

Combined CMRD for M, G, and A primaries

Maximum likelihood fit: $\partial N/\partial q \propto q^{\alpha}$ with $\alpha = 0.25 \pm 0.29$ (Reggiani e³ Meyer 2013)

Can we extrapolate it into the BD regime?

A simple model for the sub-stellar CMF

MASS and SEPARATION DISTRIBUTIONS:

```
dN = C_0 q^{\alpha 0,1} a^{\beta 0,1} d\log q d\log a
```

	BDs	planets
max mass	80 M _J	0.1 M _{star}
min mass	$5 \mathrm{M}_{\mathrm{J}}$	
max separation	10000 AU	outer cutoff
min separation	0.1 AU	
α _{0,1}	1.25	-0.31
β _{0,1}	1	0.39

NORMALIZATIONS:

0.032 [12-72 M_J] - [28-1590 AU]

(Metchev & Hillenbrand 2009)

0.032 [1-13M_J] - [0.3-2.5 AU]

(Heinze et al. 2010)

NaCo-LP started in 2008-2009 in preparation to SPHERE to study the occurrence of planets and BD at wide-orbits (50-500 AU) around solar-type stars.

- H-band
- 18 nights
- 110 targets
- selection criteria: dec < 25 deg, age < 200 Myrs , d < 100 pc, R < 9.5 mag

(Survey description and statistical analysis in *Chauvin et al.* and *Vigan et al.* in preparation)

NaCo-LP started in 2008-2009 in preparation to SPHERE to study the occurrence of planets and BD at wide-orbits (50-500 AU) around solar-type stars.

- H-band
- 18 nights
- 110 targets
- selection criteria: dec < 25 deg, age < 200 Myrs , d < 100 pc, R < 9.5 mag

no detection of substellar companions

ASSUMED MODEL:

 $dN = C_0 m^{\alpha 0,1} a^{\beta 0,1} d\log m d\log a$

	BDs	planets
max mass	80 MJ	0.1 M _{star}
min mass	5 M _J	
max separation	10000 AU	20 AU
min separation	0.1 AU	
α _{0,1}	1.25	-0.31
β _{0,1}	1	0.39

NORMALIZATIONS:

0.032 [12-72 M_J] - [28-1590 AU] (Metchev & Hillenbrand 2009) 0.032 [1-13M_J] - [0.3-2.5 AU] (Heinze et al. 2010)

This result only includes NaCo-LP targets: we will include archival data as well.

We will explore different combinations of β_1 and outer truncation radius.

(Reggiani et al., in preparation)

	BDs	planets
max mass	80 M _J	0.1 M _{star}
min mass	5 M _J	
max separation	10000 AU	20 AU
min separation	0.1 AU	
α _{0,1}	1.25	-0.31
β _{0,1}	1	0.39

 $dN = C_0 m^{\alpha 0,1} a^{\beta 0,1} d\log m d\log a$

NORMALIZATIONS:

0.032 [12-72 M_J] - [28-1590 AU] (Metchev e³ Hillenbrand 2009)

ASSUMED MODEL:

0.032 [1-13M_J] - [0.3-2.5 AU] (Heinze et al. 2010)

This result only includes NaCo-LP targets: we will include archival data as well.

We will explore different combinations of β_1 and outer truncation radius.

(Reggiani et al., in preparation)

- The observations do not rule out our simple model.
- They are consistent with a minimum in the substellar CMF (see also Sablmann et al. 2011b; 25-45 MJ)
- BD contribution to the CMF cannot be neglected!

- Herbig Ae/Be star (L' = 5.7 mag, *Gezari et al. 1999*)
- 1-12 Myrs (Guimarães et al. 2006; Blondel & Djie 2006)
- 145-150 pc (Sylvester et al. 1996, Blondel & Djie 2006)
- NaCo/PDI H-band observations: resolved disk structures (Quanz et al. 2013)

- DDT time (2 hours) in June 2013
- NACO L'-band images with AGPM vector vortex coronograph (Mawet et al. 2013) in ADI mode
- Data reduction package PYNPOINT (Amara & Quanz 2012)

PYNPOINT

Creates a set of basis to reproduce stellar PSF with PCA methods *(Jee et al. 2007)*

Fits the stellar PSF to the individual frames with chosen # of PCAs

Corrects for the PSF

Averages over all frames to improve the S/N

Returns the residual image

- DDT time (2 hours) in June 2013
- NACO L'-band images with AGPM vector vortex coronograph (Mawet et al. 2013) in ADI mode
- Data reduction package PYNPOINT (Amara & Quanz 2012)

- DDT time (2 hours) in June 2013
- NACO L'-band images with AGPM vector vortex coronograph (Mawet et al. 2013) in ADI mode
- Data reduction package PYNPOINT (Amara & Quanz 2012)

L' ~ 12 mag @ ~145 pc @ ~5 Myr \Rightarrow ~40 M_J (COND models)

- DDT time (2 hours) in June 2013
- NACO L'-band images with AGPM vector vortex coronograph (Mawet et al. 2013) in ADI mode
- Data reduction package PYNPOINT (Amara & Quanz 2012)

L' ~ 12 mag @ ~145 pc @ ~5 Myr \Rightarrow ~40 M_J (COND models)

Conclusions

• Current observations are consistent with a mass continuum in the substellar CMF.

• There seems to be a minimum in the substellar CMF between 10-30 M_J at large separations, consistent with results from Sahlmann et al. 2011 (25-45 M_J) for smaller separations (<10 AU).

• The BD contribution to the substellar CMF cannot be neglected.

• HD169142b: planet or BD? The only way of answering this question would be to know how it formed.