Red Optical Planet Survey (R#PS): A radial velocity search for low mass M dwarf planets

John Barnes

Centre for Astrophysics Research University of Hertfordshire UK

Collaborators:

H. Jones, D. Pinfield, M. Tuomi (University Of Hertfordshire, UK)

James Jenkins, Patricio Rojo (Universidad de Chile)

MIND THE GAP

Andrés Jordán, Dante Minniti, Pamela Arriagada, (Universidad Católica de Chile)

S. Jeffers (Göttingen)

The holy grail of exoplanet hunting Earth-mass planets

Nearest stars vs stars with detected planets

M dwarf planet frequencies

Kepler planet candidates:

Earth/super-Earth size planets ~3–4 x more numerous around M stars than earlier spectral types (Borucki et al. 2011)

Found in greater numbers than transiting Jupiter size planets orbiting earlier spectral types

Many of these candidates are in close orbits < 0.1 AU.

• Dressing & Charbonneau (2013, A&A. 767, 95) estimate occurrence rates of $0.9 \pm {}^{0.04}_{0.03}$ for M dwarf Kepler transit candidates with $0.5 - 4 R_{\oplus}$ and P < 50 d

M dwarf planet frequencies

HARPS early-mid M dwarf sample (Bonfils et al., 2013, 549, 109)

Frequency	100-1000 M _⊕	1-10 M_{\oplus}	
P = 1 - 10 d	≤ 0.01	$0.36 \pm 0.25 \\ 0.10$	
P = 10 - 100d	$0.02 \pm \frac{0.03}{0.01}$	$0.52 \pm 0.50_{0.16}^{0.50}$	

 At least 25% of early M dwarfs should harbour Earth-mass (1-10 M_⊕) planets in short period orbits!

•but may be as high as 100% !!

Freq. of M dwarf HZ planets, $\eta_{\oplus} = 0.41 \pm \frac{0.54}{0.13}$ (i.e. 28% - 95%) !!!

Next talk (Mikko Tuomi)

So many M dwarfs - why so few M dwarf planets....?

 $\operatorname{Flux} F_\lambda$

Recent results

 CRIRES/VLT: Infrared K-band using a NH₃ gas cell has achieved ~5ms⁻¹ (Bean et al. 2010) using 364 Å of spectrum

Keck/NIRSPEC – 1.25 µm R~20,000 (4 orders 150-200 Å)

Tellurics as reference \rightarrow Precision = 180 – 300 ms⁻¹

No evidence for planets around 8 M dwarfs (Rodler et al. 2012, A&A, 538, 141)

Keck/NIRSPEC : 50 ms⁻¹ precision using tellurics (K band)
 20 young stars in β-Pic and TW Hya (77 ms⁻¹ limited by starspots).
 Hot/warm Jupiters excluded (Bailey et al. 2012, ApJ, 749, 16)

RV sensitivity in the red-optical

- RO spectral information 0.65 1.05 μm region (M6 spectrum – red)
- Atmospheric O_2 and H_2O lines (green)

- SED (incl. MIKE & CCD response) for typical M5.5V & M9V dwarfs.
- Red optical and HARPS region fluxes: $F_{0.7-0.9}/F_{0.5-0.7} = 11.5$ (M5.5V) and 19 (M9V) (based on MIKE instr & CCD)

Stability with tellurics as a reference fiducial

Tellurics stable to 10 ms⁻¹ over 6 years in HARPS data and to ~2-6 ms⁻¹ over week timescales Figueira et al. (2010)

Target	data-set [d]	$\sigma_{(X<1.5)}$	$\sigma_{(X<1.2)}$	$\sigma_{(X<1.1)}$ [m/s]
Tau Ceti	1	4.53	3.38	2.41
	2	5.53	4.07	3.27
	3	5.81	4.55	3.70
	Full	9.77	9.16	8.43
μ Ara	1	5.00	3.36	2.31
	2	6.18	4.14	2.61
	3	6.38	4.27	2.66
	4	5.67	3.86	2.39
	5	5.67	4.01	2.57
	6	6.18	4.71	3.24
	7	6.46	4.93	3.40
	8	6.94	5.42	3.91
	Full	9.88	10.10	10.23
€ Eri	Full	10.82	10.55	9.61

Deconvolution

S/N in a single spectrum is typically of order a few to to a few hundred

Several hundred to several thousand lines in a typical spectrum

Magellan/MIKE M5.5V-M8V dwarfs

Barnes et al., 2012, MNRAS, 424, 591

Object	S/N	Error (ms ⁻¹)	$\frac{\text{Mean } \Delta \text{OP}}{(\text{ms}^{-1})}$	rms scatter (ms ⁻¹)	Discrepancy (ms ⁻¹)	Photon-limited precision (ms^{-1})
GJ 1002	113	12.8	12.7	32.4	29.7	3.3
GJ 1061	163	9.37	11.8	15.7	12.6	2.5
GJ 1286	84	8.63	8.88	22.1	20.3	4.4
GJ 3128	84	8.80	20.0(12.6)	87.7	87.2	4.4
SOJ025300+165258	90	9.91	7.0	63.3	62.5	4.2
LHS 132	25	29.7	27.2	33.7	16.0	14.5
LP944-20	44	69.1	208	121	99.3	7.6

Observation pair r.m.s in good agreement with cross-corr. errors

- 10σ and 6σ signals for GJ 3128 and SOJ0253+1653
- GJ 3128: P = 0.51 d, K_{*} = 209.4 m/s m_psini = 3.3 M_{Nep}
- SO J0253+1653: P = 2.1 d, K_{*} = 182.7 m/s -- m_psini = 4.9 M_{Nep}

Are there significant noise sources yet unaccounted for?

Proxima Centauri – a training dataset

 Archival UVES data from 2009 March 10, 12 & 14 taken as a simultaneous wavelength monitoring programme (Fuhermeister, 2010)

Blue/Red Arm (0.4 – 1.1 μ m) Resolution 40,000 – 1^{$\prime\prime$} slit

Proxima Centauri

 Archival UVES data from 2009 March 10, 12 & 14 taken as a simultaneous wavelength monitoring programme (Fuhermeister, 2010)

Blue/Red Arm (0.4 – 1.1 μ m) Resolution 40,000 – 1^{$\prime\prime$} slit

Proxima Centauri

 Archival UVES data from 2009 March 10, 12 & 14 taken as a simultaneous wavelength monitoring programme (Fuhermeister, 2010)

Blue/Red Arm (0.4 – 1.1 μ m) Resolution 40,000 – 1^{$\prime\prime$} slit

Continuing ROPS with UVES

Four half nights on UVES/VLT – 2013 July 22-28

Advantages of UVES:

- Better order separation
- Wavelength coverage 0.64 1.03 μm (MIKE: 0.62 0.89 μm)
- Improved resolution R~50,000 (MIKE: 35,000)
- ~1200 m/s/pixel (MIKE: 2150 m/s/pixel)
- Parallactic angle maintained during observations

Poisson limited precision using deconvolution method?

 Synthetic spectra telluric & spectral lines → deconvolve for spectra with S/N scaled to 15,30,60,120,240.
 →MC simulation to obtain mean scatter.

e.g. S/N = 120 \rightarrow ~3 m/s (MIKE/Magellan), ~2 m/s (UVES/VLT)

ROPS RVs for eight M5.5-M8 dwarfs

EXOPL

4 epochs spread over 6 nights: 5.1 – 18.6 ms

Sensitivities

For UVES - 5 ms⁻¹ - 1, 2, 3-σ K_{*} sensitivities
 3,6,9 M_⊕ at M6V
 2,4,6 M_⊕ at M9V

ROPS parameter space

- Lowest mass M dwarf RVS
- HZ 2- σ upper limits of 5.7 14.5 M $_\oplus$
- Rocky planet sensitivities should be achieved for M6V M9V targets

Summary

Initial 2 night study of 7 mid-late M dwarfs with MIKE: 10 ms⁻¹ precision on brightest / most stable targets

UVES survey of 14 mid-late M dwarfs - 4 nights with 6 night baseline: RV precisions of ~5 - 19 ms⁻¹ achieved on 8 targets (6 further targets yet to be fully analysed)

SP Type	r.m.s sensitivity (HZ)
M5.5V - M6.5V	2.9 M $_\oplus$ $-$ 7.8 M $_\oplus$ (11 M $_\oplus$)
M7V – M9V	$4.6~{ m M}_\oplus{ m -}$ $5.6~{ m M}_\oplus{ m }$

Exclude BD companions (M \ge 13 M_J) in 6/12 day orbits (0.03/0.05 AU, K_{*} \ge 6.7/5.2 kms⁻¹)

(BD desert: 0.0 $\pm^{0.25}_{0.10}\,$ % of M stars with L companions @ 5-70 AU Dieterich et al, 2012)

Four half nights pending (MIKE) in Oct / Nov 2013 – extend observations to 8 – 10 epochs