

Origin of dust and gas in the galaxies of the local group

Mikako Matsuura

Institute of Origins, University College London

Collaborators

M.J. Barlow, P.A., G.C. Sloan, A.A. Zijlstra, P.A. Whitelock,

P. R. Wood, M.-R.L. Cioni, M.A.T. Groenewegen, K. Volk,

J. Bernard-Salas, F. Kemper, T. Kodama, E. Lagadec, M. Meixner,

S. Srinivasan, C. Szyszka, J.Th. van Loon

Topics

Test cases for gas and dust cycle

- Gas and dust <u>budget</u> in the Large Magellanic Cloud based on observations
- 2. Dust in different environment: low-metallicity galaxies

Contents

- 1. Gas and dust budget in LMC
- 2. Dust in different environment: low-metallicity galaxies

Cycle of matter (gas and dust) in galaxies

Concept of cycle of matter
Past: Theory/models
(population synthesis/chemical
evolution models of galaxies)

Current: measurements

Contents

- Gas and dust budget in LMC
 1.1 Introduction
- 2. Dust in different environment: low-metallicity galaxies

Large Magellanic Cloud

- One of the nearest (50 kpc) galaxies
- Spitzer Space Telescope
 - Photometric survey (Meixner et al. 2006)
 - Complete census of asymptotic giant branch (AGB) stars
 - Spectroscopic survey (e.g. Zijlstra et al. 2006; Kemper et al. in preparation)
- First time to measure
 - the gas and dust budget within an entire galaxy scale
 - Based purely on observations

Contents

- Gas and dust budget in LMC
 1.2 Targets and observations
- 2. Dust in different environment: low-metallicity galaxies

Identified AGB stars + measured their massloss rate (gas and dust mass)

Detecting dust-embedded AGB stars using Spitzer

Matsuura et al. (2009, MNRAS, in press, astro-ph/09031123)

Contents

- Gas and dust budget in LMC
 1.3 Analysis
- 2. Dust in different environment: low-metallicity galaxies

Gas feedback in the LMC

- Total AGB mass-loss rate: 2-4x10⁻² M_☉ yr⁻¹
 - Oxygen-rich + carbon-rich AGB stars
- Type II SNe: 2-4x10⁻² M_☉ yr⁻¹
- In the LMC, Type II SNe and AGB stars are both important gas sources

Contents

- Gas and dust budget in LMC
 1.4 Results and discussion (1)
- 2. Dust in different environment: low-metallicity galaxies

Gas budget of the LMC

- Star formation rate (SFR) > Gas injection rate from SNe and AGB
- LMC star formation depends on the large reservoir of existing ISM gas
- The LMC is getting gas poorer. The SFR is likely to be declining with time.

Chemical evolution of the LMC ISM is very slow process (~1 Gyrs)

Contents

- Gas and dust budget in LMC
 1.4 Results and discussion (2)
- 2. Dust in different environment: low-metallicity galaxies

Missing mass problem in dust budget

- Current LMC dust mass: 2x10⁶ M_☉
 - HI+H₂ gas mass $(8x10^8 M_{\odot})$ x dust-to-gas ratio (0.0025)
- Dust injection rate from AGB stars: 4.3x10⁻⁵ M_☉ yr⁻¹ (up to 8x10⁻⁵ M_☉ yr⁻¹)
 - requires>20 Gyrs

Lifetime of the LMC (~15 Gyrs)

- Dust lifetime was estimated to be 4-8x10⁸ yrs (Jones et al. 1994)
- Dust deficit is short by a factor of 100
- Other dust sources required

AGB dust
(2-6)x10⁴ M_o
over (4-8)x10⁸ years

SNe
Dust formation?
Shock destruction?

Other dust sources
are needed

Contents

- Gas and dust budget in LMC
 1.4 Results and discussion (3)
- 2. Dust in different environment: low-metallicity galaxies

Topics

Test cases for gas and dust cycle

- 1. Gas and dust budget in the Large Magellanic Cloud based on observations
- 2. Dust in different environment: low-metallicity galaxies

Can dust be formed at low metallicities? Dust needs (astronomical) metals!

- Oxides
 - Olivines : $Mg_{2x}Fe_{(2-2x)}SiO_4$
 - Pyroxenes : Mg_xFe_{1-x}SiO₃

- Carbonaceous dust
 - Graphite : C
 - Amorphous : C
 - Polycyclic aromatic hydrocarbons (PAHs)

Dust mass : as a function of metallicity of galaxies It has been suggested that it is difficult to form dust grains in stars in low metallicity (Z<0.1 Z_{\odot}) galaxies

But ... we found unexpected results

Contents

- 1. Gas and dust budget in LMC
- 2. Dust in different environment: low-metallicity galaxies2.1 Introduction

The Galaxies of the Local Group

Some galaxies have low metallicities

Sculptor dwarf spheroidal (dSph) galaxy [Z/H]~-1.33

Fornax dwarf spheroidal galaxy [Z/H]~-1.0

Contents

- 1. Gas and dust budget in LMC
- Dust in different environment: low-metallicity galaxies
 2.2 Targets

Spitzer spectra

Sculptor dSph galaxy [Z/H]~-1.33 Sloan, Matsuura et al. (2009, Science 323, 353)

Fornax dSph galaxy [Z/H]~-1.0 Matsuura et al. (2007, MNRAS 382, 1889)

Contrary to expectation, we detected dust at low metallicities

Contents

- 1. Gas and dust budget in LMC
- Dust in different environment: low-metallicity galaxies
 Results

Dust at low metallicity

AGB stars

- We detected amorphous (+SiC) dust
- Carbon atoms synthesized in AGB stars

- Dust formation process around stars is affected
 - not only by the metallicity
 of the parent galaxies
 - but also by elements formed inside stars, in particular, carbon

Matsuura et al. (2005 A&A 434, 691)

Solar metallicity (Our Galaxy) (Fornax and Sculptor dSph galaxies)

Contents

- 1. Gas and dust budget in LMC
- Dust in different environment: low-metallicity galaxies
 2.4 Discussion (1)

Implications for high-z galaxies with dust

- Past explanation
 - AGB stars have two problems in producing dust
 - Age: Low and intermediate stars have not reached AGB phase (only after 1 Giga yrs)
 - Older than age of high-z galaxies (~0.3 Gyrs)
 - Low metallicity: It was difficult to form dust in AGB stars
 - Solely SNe could produce dust grains

Current explanation Sloan, Matsuura et al. (2009, Science, 323, 353)

- AGB stars can produce dust at high-z galaxies
 - AGB phase starts earlier than previously thought (about 0.28 Gyrs at 3 M_☉; Z>8)
 - Dust can be formed in AGB stars even at low metallicity
- Quantitative analysis is still waiting to be performed

Submm galaxies (z~6)

Contents

- 1. Gas and dust budget in LMC
- Dust in different environment: low-metallicity galaxies
 2.4 Discussion (2)

Summary: life-cycle of dust

Gas and dust budget

- Both AGB stars and Type II SNe are important gas sources
- Missing dust mass problem

Dust at low metallicity

- Dust formation is affected by both
 - elements formed inside stars
 - elemental abundances of the parent galaxies
- Implications for high-z galaxies
 - AGB stars are present in high-z galaxies, and can produce dust

Future

- Quantitative analysis of the dust budget is still needed
 - Other galaxies of the local group
- Understanding dust input and destructions by SNe

Sloan, Matsuura et al. (2009, Science, 323, 353)

Matsuura et al. (2009, MNRAS in press)

