Dusty disks around evolved stars

Claire Lykou

Jodrell Bank Centre for Astrophysics

Supervisors: A. Zijlstra (JBCA), O. Chesneau (OCA)

Creating dust

Dust created in the outskirts of the stellar envelope

Intermediate mass stars (1-8 solar masses)

RGB (spherical wind)
1st dredge-up: O-rich

AGB (asymmetric wind)
2nd dredge-up: O-rich
3rd dredge-up: C-rich

post-AGB / PN
CO core, CO envelope
dust envelope
O-rich or C-rich

VLTP
~20% stars to post-WD
re-ascend to AGB
C-rich

Shaping the ejecta

- Angular momentum loss driven by Mass Loss. What shapes the ejecta?
- Binaries retain angular momentum (magnetic fields?)
- Dust settles in tori / disks (circumbinary or circumstellar)
- Bipolar and Multipolar PNe
- Polar ejections "helped" by disks ? (V. Icke 1981)

Infrared interferometry

- Optical telescopes resolution up to 0.1 arcsec
- Infrared interferometry (it's dust!) MIDI/VLTI is 2 beam recombiner, baseline < 200m, resolution ~20 mas @ 10micron, N-band (8-13.5 micron) spectrally dispersed visibilities
- Visibility = FT(Brightness) = complex function (amplitude and phase)
- For MIDI phase signal corrupted by atmosphere; use amplitudes and RT code to reconstruct images (MC3D)

MIDI visibilities for different baselines orientations

Menzel 3

M2-9

Spectrophotometric *twin* of Menzel 3
Early PN with precessing jet (~18 yrs) → BINARY (separation~10AU)
MIDI found a circumbinary disk at radius: 15-900AU of silicates (1.5x10⁻⁵ Msun)

Halpha emission by HST, accretion disk around the primary?

Sakurai's Object

- •H-poor, 13C-rich (Evans '06) 0.05
- •disk amor. C

(mass: 6x10⁻⁵ Msun; radius: 65-500 AU)

•observed by MIDI 2007 (and Spitzer 2006)

•P.A. ~132deg aligned with PN

•binary? fast-rotating core?

Chesneau et al. 2009

Conclusions

- ◆ From symmetric AGB wind to asymmetric ejecta.
- ◆ Binarity seems to be the solution in angular momentum loss.
- Dust of different composition, survives and evolves near the stars.
- Sakurai's object : first detection of newly formed dust in H-poor, 13C-rich environment