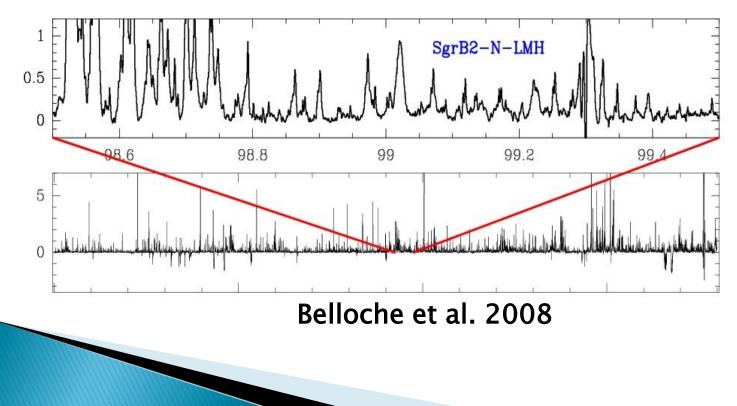
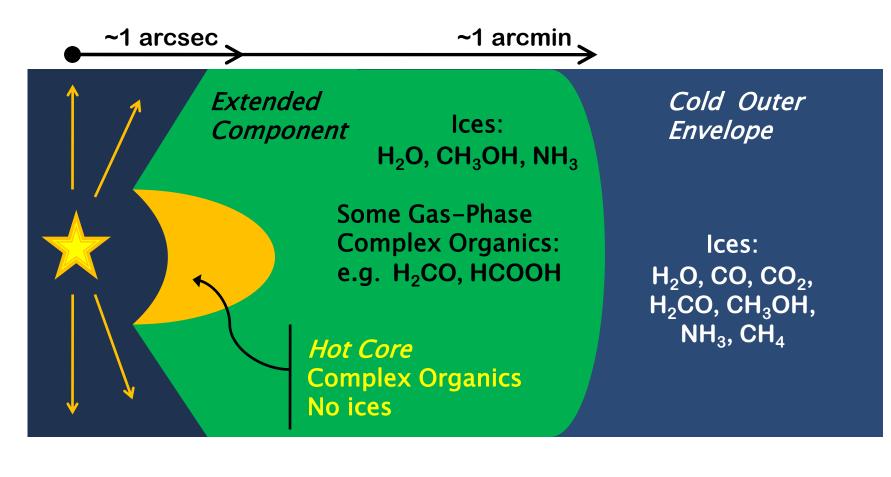


First Detections of Ethyl Formate and n-Propyl Cyanide*

Dust-grain chemistry strikes again Robin T. Garrod Cornell University



Cornell University


*Belloche, A., Garrod, R. T., Müller, H. S. P., Menten, K. M., Comito, C. & Schilke, P. 2009, *A&A, in press, ArXiv: 0902.4694*

Hot Cores

- Star-forming regions (typically high-mass)
- ▶ Hot (>100 K), dense gas (~10⁷ cm⁻³)
- Rich mm, sub-mm spectra

Hot Core Structure

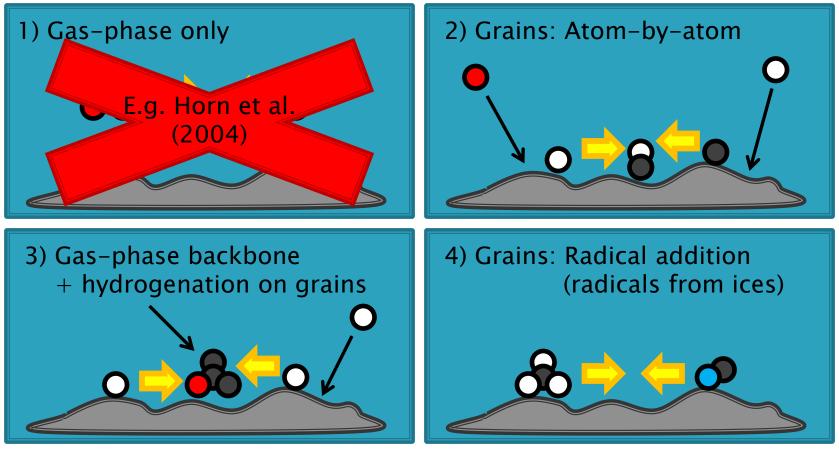
Detection and spectral analysis

- ▶ IRAM 30m telescope \Rightarrow Sgr B2N (LMH)
- 3mm, 1.3mm surveys + some 2mm spectra
- ~3600 lines detected
- Spectra modelled using XCLASS software:
 - Produce synthetic spectrum for all known interstellar species (assume LTE, non-interacting)
 - Subtract out spectra \Rightarrow FIND WEAKER LINES

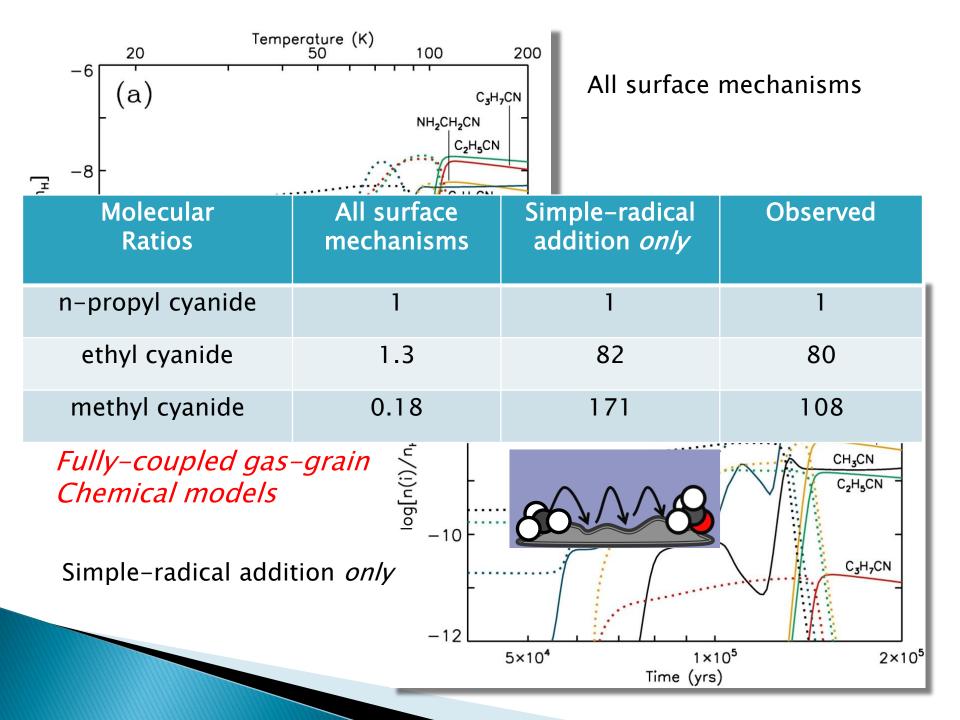
Ethyl Formate CH₃CH₂OCHO

n-Propyl Cyanide CH₃CH₂CH₂CN

Next stage of complexity in each class of molecule


- Ester
- Anti–conformer found
- > 24 lines (80-116 GHz)
- No missing lines
- Already detected: CH₃OCHO

- Alkyl cyanide / Nitrile
- Anti–conformer found
- 12 lines (80–116 GHz)
- No missing lines
- Already detected: CH₃CN CH₃CH₂CN (CH₂CHCN)


Spectral fitting parameters (main velocity component)

	Name	Size (arcsec)	T _{rot} (K)	N (cm ⁻²)	Abundance Ratio (scaled to 3")
C ₂ H ₅ OCHO	ethyl formate	3	100	5.4e+16	1
CH₃OCHO	methyl formate	4	80	4.5e+17	15
t-HCOOH	formic acid	5	70	1.5e+16	0.8
C ₃ H ₇ CN	n-propyl cyanide	3	150	1.5e+16	1
C ₂ H ₅ CN	ethyl cyanide	3	170	1.2e+18	80
CH ₃ CN	methyl cyanide	2.7	200	2.0e+18	108

How are **complex** molecules formed?

Garrod & Herbst (2006) Garrod et al. (2008)

Chemical model results

- Dust-grain chemistry is *sufficient!*
- Reproduce ratios with smaller relatives
- Sequential formation: one (methyl) group at a time
- Hydrogenation of gas-phase backbone does not fit
- Atom-by-atom formation does not fit
- Amino acetonitrile (NH₂CH₂CN) also well reproduced

Implications

- No apparent size limit for organic molecules
- Expect many more very complex molecules to be present, if they can be detected
- Complexity of 2 new molecules
 - \approx complexity of Glycine (NH₂CH₂COOH)
- Amino acids... other pre-biotics/biotics

ALMA!

Thanks

Cornell University

University of Cologne

Alexander von Humboldt Stiftung/Foundation

IRAM

Ethyl formate spectroscopy: The Ohio State University (Medvedev et al., 2009, ApJ, 181, 433)

Molecule diagrams: Oliver Baum (University of Cologne)