Observational Constraints on Interstellar Grain Alignment

B-G Andersson

SOFIA/USRA

S.B. Potter

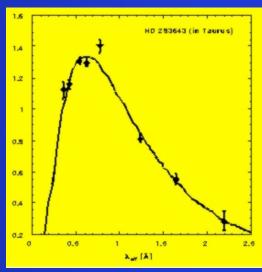
SAAO

V. Piirola

U. Turku

Why do we care?

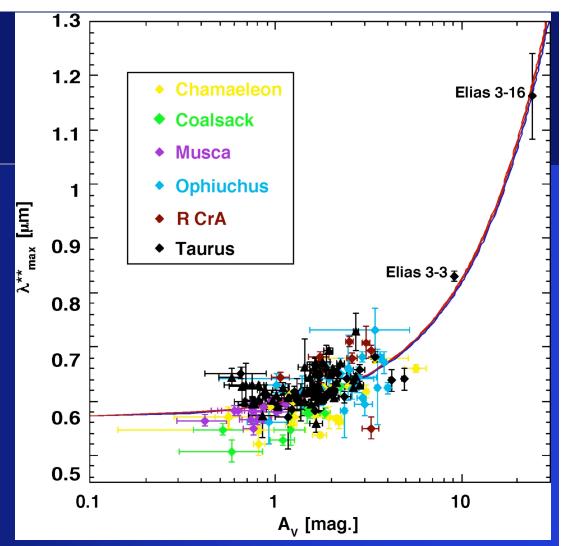
- Optical/NIR ISM polarization arises due to dicroic extinction by aligned, asymmetric, dust grains
 - Discovered in 1949, still not well understood!
 - FIR polarimetry from emission by aligned grains
- Polarimetry can be used to
 - Trace magnetic field structure
 - Measure field strength through Chandrasekhar-Fermi analysis
 - Grain micro-physics
- But if we don't know which grains we are probing, we don't know what it means!


Modern theory favors RATs

- An asymmetric grain will have a differential right-hand/left-hand helicity ("basis vector decomposition")
- The helicity of the grain "absorbs" torques from the circular polarization in an asymmetric radiation field.
- Alignment should depend (amongst other) on:
 - Radiation field strength
 - Radiation field colour (λ/a)
- Pin-wheel torques ("quasi Purcell") might enhance the Radiative Alignment Torques alignment
- See Lazarian & Hoang 2007, MNRAS, 378, 910

How do we measure grain alignment?

- Fraction of aligned grains
 - p/A_V
 - Sensitive to 1.o.s. turbulence/field topology
 - (polarization is a vector!)
- Relative alignment of different grain sizes
 - Measure λ_{max}
 - Requires multi-band data

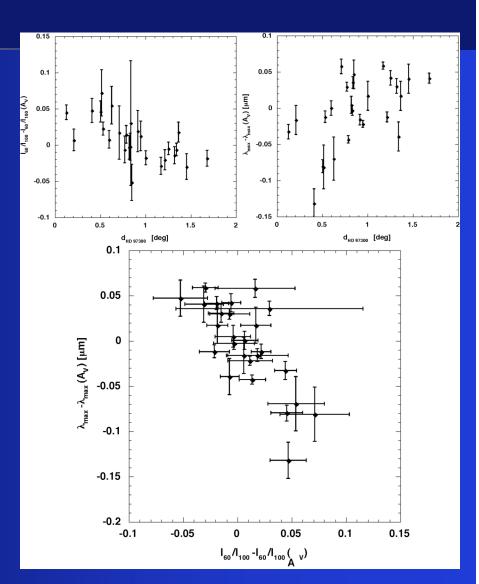

$$p(\lambda) = p_{\text{max}} e^{-\left[K \ln^2(\lambda_{\text{max}}/\lambda)\right]}$$

When observational biases:

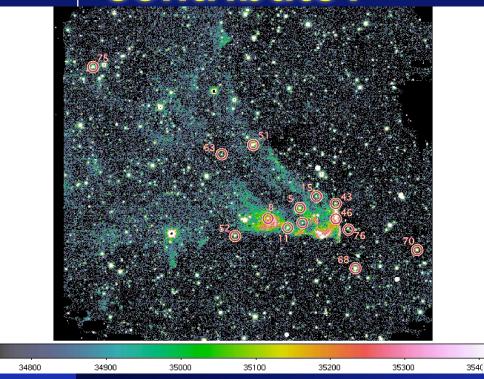
- Anomalous sightlines
- Near-by bright stars
- Cloud-to-cloud differences in grains size

are corrected for:

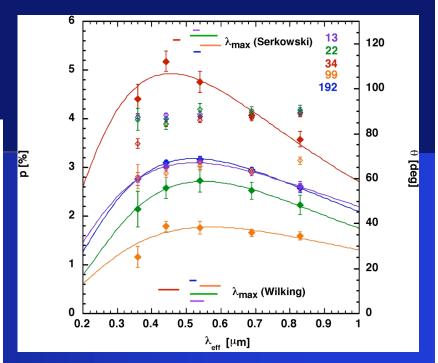
Universal relation:

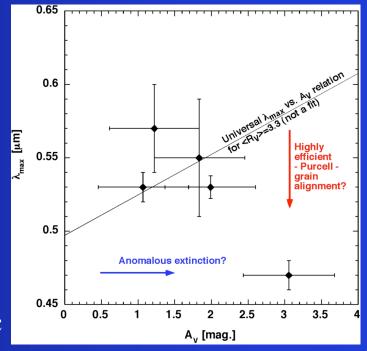

 $\lambda_{\text{max}} = (0.157 \pm 0.002) < R_{\text{V}} > + (0.0252 \pm 0.004) A_{\text{V}}$

Supports radiative grain alignment
Can be used to probe for secondary effects
(see Andersson & Potter 2007, ApJ, 665, 369)


Alignment is enhanced close to a bright star

• Measure the differentials of I_{60}/I_{100} and λ_{max} vs. the nominal relations as functions of A_V , close to HD 97300 in Chamaeleon.


Additional radiation => additional alignment



Do pin-wheel torques contribute?

- Deep H_2 1-0 S(1) imaging
- 15 sightlines with NOT/ALFOSC
- H₂ formation seems to enhance the alignment
- If true: Grains are not super-paramagnetic

Conclusions

- A quantitative theory of grain alignment has recently been developed, based on direct radiative effects
- We have observationally shown that:
 - λ_{max} correlates with A_{V}
 - Alignment enhanced close to bright star
 - Alignment seems to be enhanced by H₂ formation
 - Supporting radiative alignment theory.
 - A 60 year old problem is being solved!