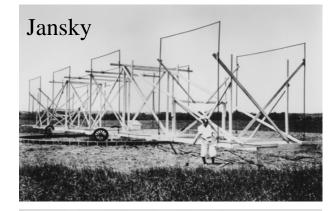
OLFAR – Orbiting Low-Frequency Antennas for Radio Astronomy

JENAM, April 22, 2009

Outline


Presentation of a new concept for low frequency radio astronomy in space

- Why low frequencies?
- Why in space?
- Outline of the idea
- Issues

History of Low Frequency astronomy

- Karl Jansky's in 1932
 20.5 MHz (14.5 m) at Bell labs
- Grote Reber continued radio astronomy work at 160 MHz (1.9 m) and observed the Sun, IO, Cygnus-A

History of Low Frequency astronomy

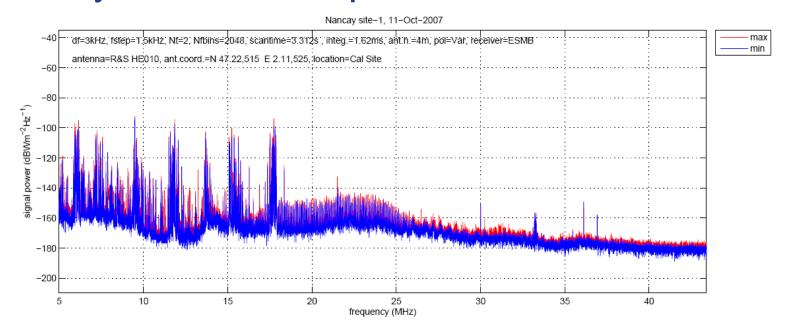
- First radio telescopes operated at long wavelengths with low spatial resolution and very high system temperatures
- Radio astronomy quickly moved to higher frequencies with better spatial resolution $(\theta = \frac{\lambda}{D})$ and lower system temperatures

Low frequency Science

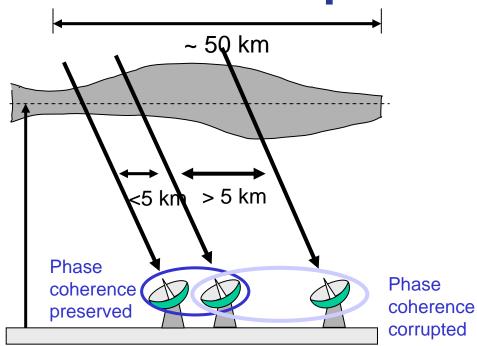
- One of the last unexplored frequency bands.
- Exploring the early cosmos at high hydrogen redshifts, the so-called dark-ages
- Discovery of planetary and solar bursts in other solar systems
- Tomographic view of space weather
- .. the unknown ..
- and for many other astronomical areas of interest

Current low frequency instruments

- VLA 74 MHz
- GMRT
- LOFAR
- LWA
- MWA
- ... and more

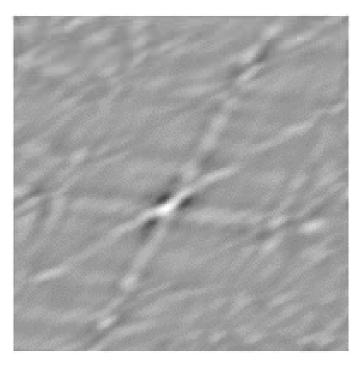

Difficulties with Low Frequency observations on Earth

- Interference
 - Severe at low frequencies
- Phase coherence through ionosphere
 - Corruption of coherence of phase on longer baselines
 - Imperfect calibrator based gain calibration
- Isoplanatic Patch Problem:
 - Calibration changes as a function of position


Interference

Very "crowded" spectrum

Ionospheric Structure


Compared to shorter λ :

Maximum antenna separation: < 5 km (vs. >10³ km)

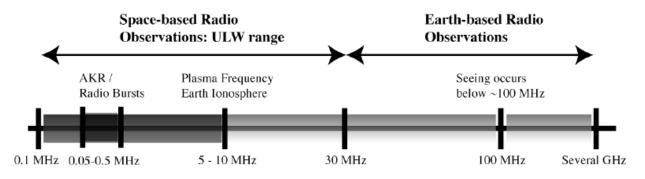
Angular resolution: $\theta > 0.3^{\circ} (vs. < 10^{-3}^{\circ})$

Example ionosphere

• VLA – 74 MHz

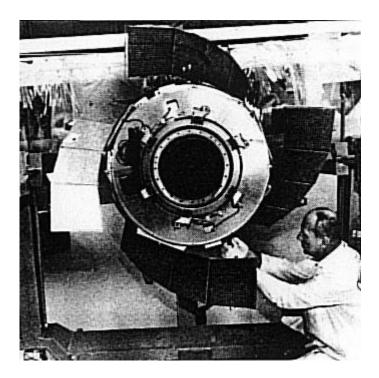
Isoplanatic Patch Problem

- Standard self-calibration assumes single ionospheric solution across FOV: φi(t)
 - Problems: differential refraction, image distortion, reduced sensitivity
 - Solution: selfcal solutions with angular dependence


 $\varphi i(t) \rightarrow \varphi i(t, \alpha, \delta)$

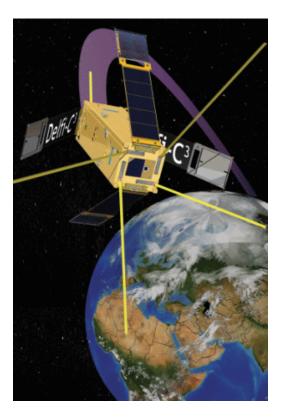
However: computational complex

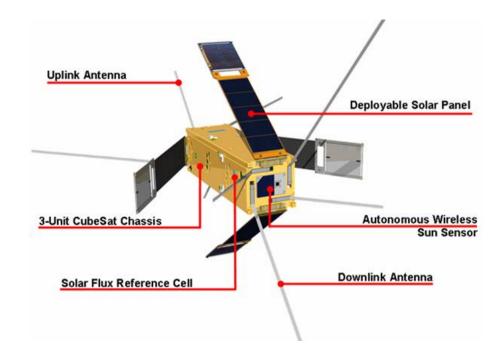
OLFAR


- Want to observe the 0.3 30 MHz band (unique)
- So, if the ionosphere is a problem → Space mission
- Aperture diameter of 10 100 kilometer → distributed aperture synthesis array (eg. Multiple satellites)
- Autonomous system
- Distributed processing system
- Possible locations: moon-orbit, Earth-Moon L2, L4/5, outer space ...

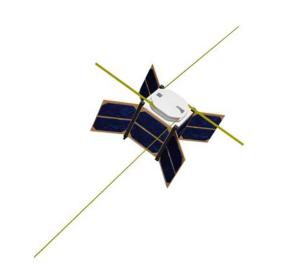
Previous low frequency missions

- RAE-A (Explorer 38)
 - 1968 July 4
 - 190 kilogram
 - Earth orbit
- RAE- B (Explorer 49
 - 1973 June 10
 - 328 kilogram
 - Moon orbit
 - 25 kHz to 13.1 MHz


Basic idea



- Nano satellites
- Formation flying
- Deployable antenna for the frequency band between 1 and 30 MHz
- Ultra-low power receivers
- Intra-satellite communication
- Autonomous distributed processing
- Using diversity techniques for downlink


Example – Delfi-C3 Cubesats

Cubesat

- Nanosatellite
- 1..3 kg
- 10x10x10 cm
- Approx. 1 ..3 W of power

 Payload for other missions

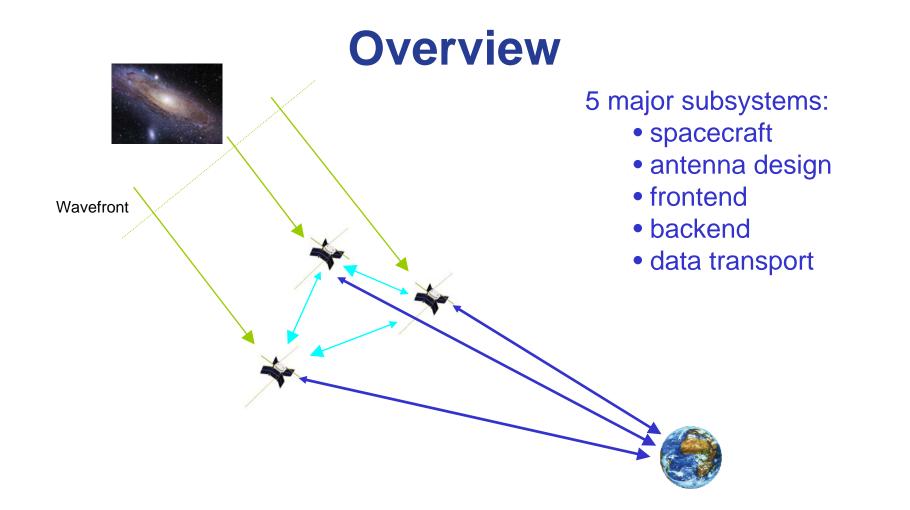
OLFAR system specifications

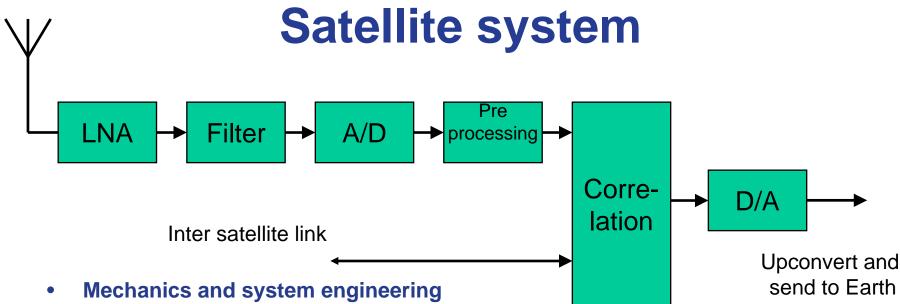
Preliminary OLFAR system specs

- Frequency range Antennas Number of antennas / satellites Maximum baseline
- Configuration Spectral resolution Processing bandwidth Spatial resolution at 1 MHz Snapshot integration time Sensitivity Instantaneous bandwidth Deployment location

at least 1-10 MHz, preferably 0.3 - 30MHz dipole, tripole ≥ 50 between 60 and 100 km Formation flying, investigate 2D and 3D 1 kHz t.b.d. 100 kHz? 0.35 degrees for 60 km aperture 1 to 1000 s, dependent on deployment location confusion limited to be determined Earth orbit, moon orbit, moon far side ?, L2 point

Program

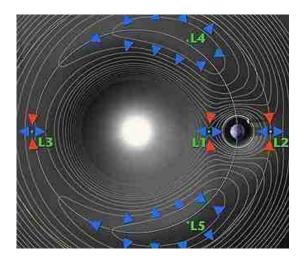

- DARIS Distributed Aperture Array for Radio Astronomy in Space (ESA/ESTEC funded project)
 - Concept study started
- OLFAR project Funding for phase-A currently under review (Dutch Science and Technology Funds)


How many satellites?

Торіс	Requirements					
	Freq. (MHz)	Res.	Baseline (km)	Expected signal	N (Antenna s	t_{exp} (5 σ)
Extragalactic surveys	10	1'	0.1-100	$\approx 65 \text{ mJy}$	300	2 yr
Galactic						
surveys Solar system	0.1-10	degree s	0.3-30	10 000 K	10-100	yr
Origin cosmic rays	0.1-30	1"	$(3-30) \times 10^3$	155 000K	100 000	100 d
Transients				•	•	
Solar/Planetary bursts	0.1-30	degree s	0.5-200	МЈу	1-100	min- hours
Extrasolar planets	0.5-30	≲1'	≳35-1000	10 mJy	$10^4 - 10^5$	15 min
Ultra-high	10-100	N/A	0-5	100 MJy	1-00	N/A
energy						(Bursts)
particles				.		
Meteoritic						
impacts						

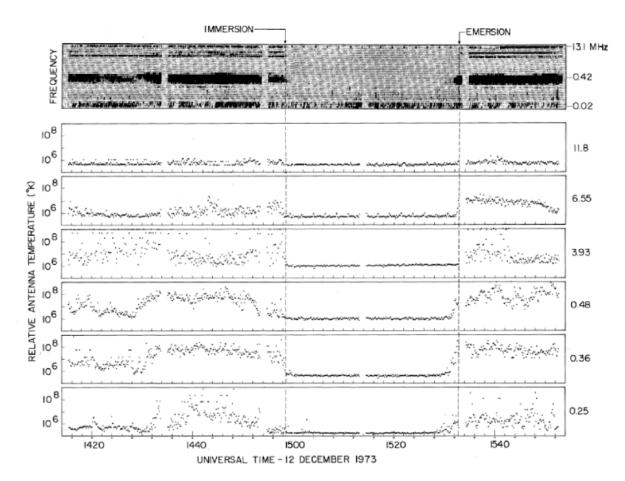
- Absolute and relative navigation and attitude
- Inter-satellite link
- Active antenna system for low-frequency radio astronomy
- Sensors for relative attitude determination
- Star trackers for absolute attitude determination
- Constellation maintenance
- Correlation software and hardware
- Overall observation control

Some system aspects


- Antenna design for 1-30 MHz band
- Active LNA
- Receiver filtering, sampling,
- Timing, clocking (local and global)
- Localization
- Digital signal processing
 - RFI mitigation
 - Filtering
 - Subband sampling
 - Distributed correlation, tiedarray calculations

- Data transport
 - Between individual nodes
 - Corrrelated and/or tied array data to datacente
- Datahandling
 - LOFAR as receptor
 - Storage
 - Post-processing
 - Calibration

Locations

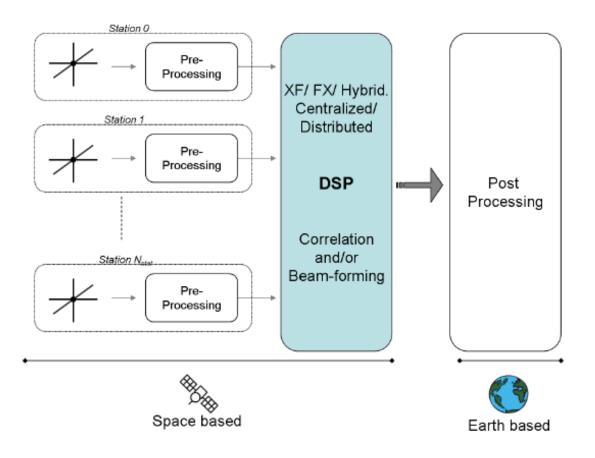

- Earth orbit
- Moon orbit
- L2
- Outer space

- Design considerations:
 - RFI from Earth
 - Constellation control (absolute and relative position)
 - Downlink to Earth

Shielding by the moon

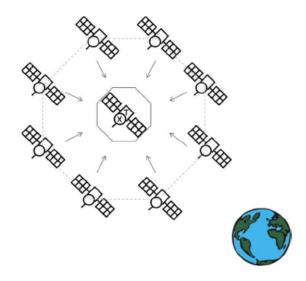
Antenna systems

- Astronomical observing antenna
 - $-0.3 30 \text{ MHz} \rightarrow \text{Wavelengths: } 10 1000 \text{ meter }!$
 - Aperture
- Inter satellite link
 - Data rates (raw data bandwidth of 100 kHz with 8 bits and all-to-all satellites is ~200 Mbps per satellite)
- Down link
 - Data rate is ~ 20 Mbps in case of correlation in space.
 - Possible use of diversity techniques


Formation flying

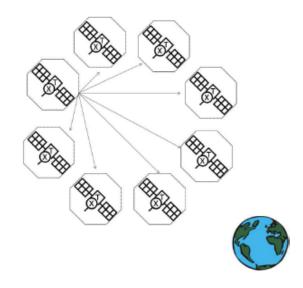
- Constellation must be limited to approx. 100 kilometers.
- Individual satellites can move slowly (as long as stable within integration time).
 - Constraint: given the integration time and the accuracy of 1/20th of the wavelength within the integration time.
- 5 years of operation

• This is currently under research (we consider L2 and moon orbit at this moment).



Data processing

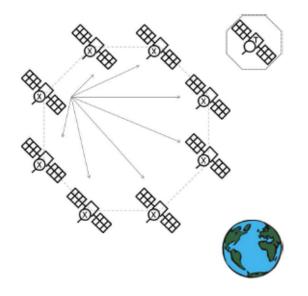
Signal processing



Centralized correlation, centralized downlink

- Correlation:
 - Distributed
 - Centralized
- Downlink
 - Distributed
 - Centralized

Signal processing



Distributed correlation, Distributed downlink

- Correlation:
 - Distributed
 - Centralized
- Downlink
 - Distributed
 - Centralized

Signal processing

Distributed correlation, Centralized downlink

- Correlation:
 - Distributed
 - Centralized
- Downlink
 - Distributed
 - Centralized

Example

- If case of 50 satellites
- 8 bit sampling
- Bandwidth of 10 MHz
- Integration time of 1 second

→ Communicaton in bits/sec:

	Intersatellite	Downlink
Distributed correlation		
Distributed Transmission	235,2E+6	359,99E+3
Centralized Transmission	235,2E+6	18,0E+6

Planning

- 2009: concept study, start
- After that detailed system design with focus on main issues:
 - Virtual distributed system and nano satellite architecture
 - Radio architectures for the communication in distributed arrays in space
 - distributed autonomous signal processing
- 2010/11: astronomical receiver in Delfi-N3xt
- 2013: flightunits available

Conclusions and future work

- OLFAR is a new concept of a low frequency radio telescope in space using small satellites.
- Correlation must be done in space.
- Distributed processing with centralized downlink transmission is the preferable option.
- Inter satellite link is the communication challenge.
- In 2010/2011 experiments with Delfi-N3xt.

Future work:

- Simulate the constellations in Moon Orbit en L2
- Virtual distributed system and nano satellite architecture
- Radio architectures for the communication in distributed arrays in space
- Distributed autonomous signal processing

Partners

Technische Universiteit Delft

Contributors:

- ASTRON
 - Albert Jan Boonstra
 - Jan Geralt bij de Vaate
 - Wim van Cappellen
 - Raj Thilak Rajan
 - Mark Bentum
- Universiteit Twente
 - Mark Bentum
 - Arjan Meijerink
- Technical University Delft
 - Eberhard Gill
 - Chris Verhoeven
 - Alle-Jan van der Veen
- Radboud University
 - Marc Klein Wolt
 - Heino Falcke

- EADS Astrium
 - Noah Saks
- ESA/ESTEC
 - Kees van 't Klooster
- Dutch Space
 - Eric Boom
- ISIS Space
 - Jeroen Rotteveel
- AEMICS
 - Mark Boer
- SystematIC
 - Bert Monna
- National Semiconductors
 - Arie van Staveren
- Axiom IC
 - Ed van Tuijl