

X-ray/IR selection of AGN

Murray Brightman & Kirpal Nandra Imperial College London At JENAM 2009 University of Hertfordsire

Talk outline

- ♦ Introduction
 - Why do we want to find high redshift AGN?
 - How do we find them?

\diamond Our analysis

- o 12µm galaxy sample
- Optical line ratio diagnostics
- X-ray analysis
- AGN definition
- Local tests of high-z AGN selection methods

 \diamond Summary and Conclusion

Introduction

- ♦ Complete and reliable samples of AGN are needed for:
 - Evolution of galaxies linked to growth/activity of central supermassive black holes? Both were growing rapidly at z~1-3
 - The history of accretion power in the universe
 - Origin of the cosmic X-ray background (CXB)

♦ Mid-IR commonly used to select high-z AGN using Spitzer

- Techniques successful for dominant AGN (quasars). Less sensitive to AGN with significant starburst emission
- ♦ AGN samples selected in one waveband suffer from incompleteness and unreliability, → multi-wavelength approach needed.
- Local well-studied galaxy samples provide valuable insight into their higher-z analogues
- Characterising local Compton thick (CT) AGN is also useful as a large population of as-yet unfound CT AGN is predicted at high-z from modelling of the CXB.

12 Micron Galaxy Sample

 ♦ We use the (extended) 12 micron galaxy sample (12MGS) of 893 local (z<0.3) galaxies selected at 12µm using IRAS (Rush, Spinoglio & Malkan 1993).

The 12MGS has been widely studied, at many wavelengths and has much supporting data.

We collect H, K (near-IR) and IRAS photometry for the sample (Malkan and Spinoglio 89, Spinoglio+ 95)

Optical Spectroscopy

 \diamond We compile optical line flux data from the literature (~550 galaxies, namely H- α , H-B, [OIII] λ 5007, [NII] λ 6584, [SII] $\lambda\lambda$ 6716,30 and [OI] λ 6300) for line ratio diagnostics

(Armus+89, Baan+98, Corbett+03, De Grijp+92, Goncalves+99, Ho+97, Kewley+01, Kim+95, Kong +02, Kopylov+04, Kuraszkiewicz+04, Maia+87, Osterbrock+93, Sekiguchi+93, Spinelli+06, Vaceli +97, Veron-Cetty+86, Malkan+ in prep, SDSS)

 \diamond We use line ratio diagnostics of Kewley+ 06 to separate Seyfert 2s, starbursts and LINERs.

X-ray analysis

 \diamond 129 XMM-Newton observations of 12MGS were reduced + spectra extracted (all galaxy types).

 \diamond Spectra fitted with baseline power-law model with galactic absorption.

 \diamond Extra model components added as statistically required (Δx^2 constraints). Including

- thermal emission from a plasma (raymond-smith model)
- black-body curve (for soft excess)
- warm absorption (cwa18 model)
- Compton reflection from neutral matter (pexmon, Nandra et al 2007)
- heavy absorption by neutral matter (Brightman & Nandra, in prep)
- gaussians for line emission and absorption

♦ Through spectral fitting we determined the X-ray luminosity and the neutral absorption present of the galaxies

X-ray spectral fitting - examples...

AGN sample definition

In order to extrapolate to high-z we need to construct a solid well defined sample of AGN.

 \diamond We chose the following selection criteria:

- ✓ All Seyfert types and LINERS with $L_X > 10^{41} \text{ ergs}^{-1}$
- \checkmark N_H>10²³ cm⁻² and L_X>10⁴¹ ergs⁻¹
- ✓ Sy2 or LINER with L_{OIII} >10⁴¹ ergs⁻¹ (≈10⁴⁴ ergs⁻¹ bolometric)

 \checkmark Any galaxy type with L_X>10⁴² ergs⁻¹

IRAS colour-colour characteristics

Summary & Conclusions

- ♦ We constructed a <u>well defined local AGN sample</u> selected at 12µm
- ♦ We note a connection between the hard X-ray 12 µm ratio and activity type which <u>may be useful for high-z AGN</u> <u>selection</u>
- We confirm that selecting AGN in one wavelength regime will not produce complete samples
- In order to select a complete unbiased high-z AGN sample, <u>mid-IR, far-IR and X-ray observations must be used in</u> <u>conjunction</u>
- \diamond <u>X-ray observations only</u> can determine whether an AGN is Compton thick.