

Imperial College London

How do wave-particle interactions in the heliosphere modify solar electron distribution functions?

Camille Y. Lorfing¹

Hamish A. S. Reid¹, Raul Gomez-Herrero², Milan Maksimovic³, Georgios Nicolaou¹, Christopher J. Owen¹, Javier Pacheco-Rodriguez², Domenico Trotta⁴, and Daniel Verscharen¹

> ¹Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking RH5 6NT, UK ²Universidad de Alcala, Space Research Group, 28805 Alcala de Henares, Spain

³LESIA, Observatoire de Paris, Universite PSL, CNRS, Sorbonne Universite, Univ. Paris Diderot, Sorbonne Paris Cite, 5 Place Jules Janssen, 92195 Meudon, France ⁴The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, UK 1. Electrons are emitted at the Sun 2. Electrons interact with background plasma:

> growth of Langmuir waves

3. Langmuir waves nteract with each other:

production of radio emission 4. Electrons detected in situ in solar wind by spacecrafts like Solar Orbiter 5. Track electron beams in the solar system via their radio emission

Langmuir waves co-temporal with electrons beams

Langmuir waves are observed co-temporal with electron beams by spacecrafts like Helios and WIND

Fig. 5. Langmuir waveform as observed by WIND in the quiet solar wind (15/09/2007).

Broken power law

obs and sim work:

broken power law when fitting the peak electron flux vs energy

 \rightarrow What causes this break?

 \rightarrow At what energies does it happen?

Electron flux, Langmuir waves, type III radio bursts

Lorfing et. al, 2023 in prep

- EPD (STEP/EPT) observes electrons
- RPW (TNR) observes associated type III
 radio bursts
- Solar Orbiter is in the right position to measure the locally generated Langmuir waves
- We observe LW co-temporal to the 60 keV electrons
- 50 keV is around the energy of the spectral break observed in the electron spectrum

Electron spectrum

- What is the « electron peak flux » ?
- Maximum of the electron flux per energy channel
- Result:1D array of the max flux value as a function of energy -> the electron spectrum
- The same analysis is performed on EAS (SWA) electrons, and on STEP-EPT (EPD) electrons
- We see a lovely alignment between the electron spectram measured by both instruments!
- We observe several breaks in the electron spectrum -> why do these features appear?

Electron flux evolution

 \rightarrow What modifications of the electron flux cause the different features to appear on the electron spectrum?

Lorfing et. al, 2023 in prep

UCL

7.5

7.0

9. 25 Log(Diff. Flux)

6.0

5.5

Pitch angle

Could the spectral break be caused by pitch angle and not beam-plasma interactions?

- Anisotropic beam
- If pitch angle scattering deflected the beam trajectory + was responsible for spectral break: expect to see it at around 50 keV on the PAD
- Pitch angle is dependent on energy -> scattering doesnt affect non-thermal electrons
- Previous literature reports breaks due to pitch angle scattering at energies around 100-120 keV, way above any break we see in the spectrum
- Evidence to prove that the spectral breaks we observe are due to LW generation and wave-particle interactions, and not pitch angle scattering.

15/4/2022 event

10⁶

104

10²

Peak Flux [particles / (s cm $^{\circ}$ 2 sr keV)]

- Not all electron events have associated Langmuir waves observed
- Observe Langmuir waves with higher E closer to the Sun than typically observed at 1AU
- Break in electron spectrum in the deca-keV range is caused by wave-particle interactions
- Break at 5keV seems suspicious as occurs at meeting of both instruments
- Evidence of quasi-linear relaxation in the evolution of the electron flux due to interactions
- Pitch angle not the cause of the break at these energies
- First study that links electrons from all Solar Orbiter instruments and makes a bridge between EAS/SWA and STEP-EPT/EPD

