

Deciphering Faint Gyrosynchrotron Emission from CME using Spectro-polarimetric Radio Imaging

Devojyoti Kansabanik¹ (Infosys Fellow) ¹ National Centre for Radio Astrophysics, TIFR, India Email: dkansabanik@ncra.tifr.res.in, devojyoti96@gmail.com Surajit Mondal², Divya Oberoi¹ ¹ National Centre for Radio Astrophysics, TIFR, India ² Centre for Solar-terrestrial Research, New Jersey Institute of Technology, USA

CESRA Workshop 2023

Methods at Radio Wavelengths

- Direct observables
 - \circ Radio bursts (upto ~2 R_o using ground-based instruments)
 - From CME shocks and core
 - Radio emission from CME plasma (upto ~10 R_{\odot})
 - Circular polarization of thermal emission (e.g., Gopalswamy & Kundu 1992, 1993, Ramesh et al. 2020, etc.)
 - Faint Gyrosynchrotron (GS) emission (e.g., Bastian et al. 2001, Mondal et al. 2020, etc.)
- In-direct observables
 - Interplanetary Scintillation (IPS) (e.g. Manoharan 2010, Iwai et al. 2022, etc.)
 - Faraday rotation (FR) measurements (Kooi et al. 2022, for a review)
 - Background linearly polarized galactic/extra-galactic radio sources
 - Linearly polarized galactic diffuse emission

First Detection of GS Emission from CME-loops

Detected radio emission upto 2.8 R_{\odot} (Bastian et al. 2001)

First Detection of GS Emission from CME-loops

Detected radio emission upto 2.8 R_{\odot} (Bastian et al. 2001)

Faint GS Emission from Two Slow CMEs

Detection of the faintest GS emission at the highest heliocentric distance $(8.3 R_{\odot})$

Faint GS Emission from Two Slow CMEs

Detection of the faintest GS emission at the highest heliocentric distance (8.3 R_{\odot})

Faint GS Emission from Two Slow CMEs

Detection of the faintest GS emission at the highest heliocentric distance (8.3 R_{\circ})

GS Model Parameters — too many

• We used ultimate fast GS code developed by

Kuznetsov & Fleishman 2021.

• We consider a single power-law distribution for non-thermal electrons

 $u(E) = N E^{-\delta} (E_{min} \le E \le E_{max})$

Main assumption:

- Homogeneous medium
- Isotropic pitch-angle distribution

GS Model Parameters — too many

Spatially Resolved Modeling of Observed Spectra

Spatially Resolved Modeling of Observed Spectra

Improved Robustness using Joint Stokes I and V Modeling

- Even upper limits on absolute Stokes V lead to tighter constraints on model parameters (upto 40% improvements).
- Joint Stokes I and V modeling allows us to fit more parameters
- Estimated GS model parameters
 - Magnetic field strength (B)
 - Area of emission (A)
 - Non-thermal electron power-law index
 (δ)
 - LoS angle with the magnetic field
 - E_{min}
 - LoS depth

Current Status

- Routine observations of GS emission from CME plasma are now possible.
 - Spectropolarimetric observations with the MWA (~100 CMEs observed with MWA in between 2014 to 2015 are currently being studied).
 - Future SKA observations.
- Focus now shifted towards the modeling of the observed spectrum.
 - Stokes V provides important constraints.
 - Multi-vantage point white light observations are necessary as well.

- Individual regions are considered independent.
- No attempt has been made to model the GS emission of the CME as a single large-scale structure.
- Forward modeling based approach can be explored.
- High-dynamic-range spectroscopic snapshot imaging at higher frequencies (>300 MHz) is required to study CME GS emission at lower coronal heights.

- Individual regions are considered independent.
- No attempt has been made to model the GS emission of the CME as a single large-scale structure.
- Forward modeling based approach can be explored.
- High-dynamic-range spectroscopic snapshot imaging at higher frequencies (>300 MHz) is required to study CME GS emission at lower coronal heights.

MeerKAT (550 MHz - 3.5 GHz) is the ideal instrument for this purpose Kansabanik et al. 2023, Submitted in arXiv, will appear tomorrow

MeerKAT (550 MHz - 3.5 GHz) is the ideal instrument for this purpose

Kansabanik et al. 2023, Submitted in arXiv, will appear tomorrow

- Individual regions are considered independent.
- No attempt has been made to model the GS emission of the CME as a single large-scale structure.
- Forward modeling based approach can be explored.
- High-dynamic-range spectroscopic snapshot imaging at higher frequencies (>300 MHz) is required to study CME GS emission at lower coronal heights.

MeerKAT is the ideal instrument for this purpose