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2. Model

1. Abstract

How elliptical galaxies form and evolve? Two scenarios, monolithic collapse vs. disk-disk merger, have been debated.
We simulate the formation and chemodynamical evolution of 128 elliptical galaxies (Es) from the CDM initial fluctuation,

using a GRAPE-SPH code that includes various physical processes that are associated with the formation of stellar
systems: radiative cooling, star formation, feedback from Type Il and la supernovae (SNe Il and la) and stellar winds,
and chemical enrichment. In our CDM-based scenario, galaxies form through the successive merging of subgalaxies
with various masses. Their merging histories vary between a major merger at one extreme, and a monolithic collapse
of a slow-rotating gas cloud at the other extreme.
We succeed in reproducing (1) the observed variety of internal structure, e.g., radial metallicity gradients (Kobayashi
2004, MNRAS, 347, 740). The average metallicity gradient Alog Z/Alog r=-0.3 with dispersion of +0.2 and no correlation
between gradient and galaxy mass are consistent with observations of Mg2 gradients. The variety of the gradients
stems from the difference in the merging histories. Galaxies that form monolithically have steeper gradients, while
galaxies that undergo major mergers have shallower gradients.
We also reproduce (2) the observed scaling relations among global properties, e.g., the Faber-Jackson relation, the
Kormendy relation, and the fundamental plane (Kobayashi 2005, MNRAS, 361, 1216). An intrinsic scatter exists along
the fundamental plane, and the origin of this scatter lies in differences in merging history. Galaxies that undergo major
merger events tend to have larger effective radii and fainter surface brightnesses, which result in larger masses, smaller
surface brightnesses, and larger mass-to-light ratios.
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3. Initial Condition
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e cosmological initial condition with GRAFIC (Bertschinger 1995)

1) Monolithic-like Collapse
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4. Scaling Relations

Gravity is calculated with GRAPE probability criterion
Hydrodynamics with SPH
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We simulate 3 sets of parameters for all run. A: ¢=1.0, x=1.10 B: ¢=0.1, x=1.10 C: c=0.1, x=1.35
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