銀河系の化学進化

小林千晶 (Univ. of Hertfordshire, UK)

Cosmic evolution from z=5 to 0, [O/H] = -5 (blue) to -1 (red); > -1 (white) **Philip Taylor,** https://www.youtube.com/watch?v=jk5bLrVI8Tw

Chemical Enrichment

Nomoto, CK, Tominaga 2013 ARAA

→ [Fe/H] and [X/Fe] evolve in a galaxy: fossils that retain the evolution history of the galaxy → Galactic Archaeology

Galactic Archaeology of Milky Way and local dwarf galaxies Motions of one billion stars are measured with GAIA. \leftrightarrow Ages from asteoseismology COROT, Kepter, K2, TESS... Elemental Abundances (from Li to Eu) of one million stars * will be measured with multi-object spectrographs: ◆ SEGUE (Resolution~1800) on SDSS ◆ RAVE (R~7500) on 1.2m UKST ◆ HERMES on AAT (R~28000/50000) ◆ APOGEE (R~20000, IR) on SDSS ◆ GAIA-ESO with VLT (R~20000/40000) WEMOS on Subaru ◆ WEAVE on WHT (R~5000/20000) ◆ 4MOST on VISTA (R~5000/18000) ◆ **PFS** on Subaru (R~2300-5000) MSE (R~2000/6500/20000) Chemical and dynamical evolution of the Milky Way Galaxy are being revealed! GAIA spacecraft http://sci.esa.int/gaia/

Galactic Chemical Evolution (GCE)

No instantaneous approximation (1) One-zone model (instantaneous mixing): Tinsley 80, Timmes+ 95,

Pagel 97, Matteucci 01, Prantzos+ 93, Chiappini+ 97, CK+ 00,06,11... Vincenzo+14, Cote+16

 $\frac{d(Zf_g)}{dt} = E_{SW} + E_{SNcc} + E_{SNIa} - Z\psi + Z_{inflow}R_{inflow} - ZR_{outflow}$ Inflow **Outflow** Metal ejection rates decreased by nucleosynthesis yields star formation initial mass function (IMF) SNIa progenitor model nuclear reaction rates given from hydrodynamics in

(2) Stochastic model

Ishimaru+99; Argast+02; Cescutti+08; Wehmeyer+15 (3) chemodynamical simulation

Burkert & Hensler 87, Katz 92, Steinmetz & Müller 94, Mihos & Hernquist 96, CK 04,...

→ inhomogeneous enrichment

New GCE model

CK, Karakas, Lugaro 2020, ApJ, press release tomorrow!

- New solar abundances
- New initial (BBN) abundances
- New SNIa yields (CK, Leung, Nomoto 2020, ApJ, 895, 138)
- ♦ With super-AGB stars (~8-10M_☉)
- ♦ With failed SNe at >30M_☉, keeping Hypernovae >=20M_☉
- Elements up to U with s and r-processes

Nuclei in the Cosmos XII, Cairns 2012 & XIII, Debrecen 2014

Core-collapse SNe

Explosion mechanism??

SN light curves & spectra fitting \rightarrow M, E_{kin}, M(Fe)

THE ASTROPHYSICAL JOURNAL, 900:179 (33pp), 2020 September 10

Table 2

Mass Ranges of Core-collapse Supernovae Used in Our Fiducial GCE Model, and Necessary Conditions for the Explosions

	Stellar mass (M_{\odot})	Rotation	Magnetic field
ECSN	$\sim 8.8-9$	no	no
SNII/Ibc	10–30	no	no
failed SN	30–50	no	no
HN	20–50	yes	weak?
MRSN	25–50	yes	strong

Nucleosynthesis Yields

Also, Woosley & Heger; Limongi & Chieffi

Thermonuclear (Type Ia) Supernovae

Thermonuclear explosion in a binary with C+O white dwarf Ch-mass explosion (deflagration or delayed detonation) possibly in SD vs (double detonation) in DD and SD

companion star observed (McCully+14)

CK, Leung, Nomoto 2020 for 2D hydrodynamical explosions, nucleosynthesis, & CCE

Type la SN explosions (2D)

★ Delayed detonation of Ch WD: 1.38M_☉ C+O WD, X(C)=X(O)=(1-Z)/2, solar composition Z, $ρ_c=3x10^9$ g/cm³, 10⁸K

◆ Double detonation of sub-Ch WD: 1M_☉ C+O

WD including 0.05 M $_{\odot}$ He envelope, $\rho_{c}\text{=}3.2x10^{7}\text{g/cm^{3}},\,10^{8}\text{K}$

Neutron-capture processes

Neutron Star Merger

Electron Capture Supernovae

AGB star

CK, Karakas, Lugaro 2020

Magnetorotational Supernovae

ALC: NO. OF CO.

[Eu/Fe]-[Fe/H]

Chemo-hydrodynamical Simulation Chris Haynes & CK 2019

Neutron star mergers alone cannot reproduce the observations. Hansen+17; Roederer+16; NLTE Zhao+16; HERMES-GALAH

The Origin of Elements

CK, Karakas, Lugaro 2020, ApJ

*Purely theoretical, no empirical equations.

dotted lines: solar values

The Milky Way (MW) Galaxy

What was the main physical process of each component?

MW bulge, thin disk, thick disk, halo

Similar results obtained also with Aquarius Initial Condition (CK 2015).

Star Formation History depends on environment

Bulge r<1, Solar Neighborhood: 7.5<r<8.5, |z|<0.5 kpc

CK & Nakasato 2011

Metallicity Map

o x [kpc]

✓ Radial gradient
✓ Vertical gradient
Iow-mass stellar mass
weighted, projected

[O/Fe] Map

✗ Radial gradient
✓ Vertical gradient
low-mass stellar mass
weighted, projected

[O/Fe]-[Fe/ 4<r<7, 2<r/> H] relations

Û

New Milky Way-type galaxy

Aquila Initial Condition (Scannapieco+12), 3x10⁵M_☉, 0.5kpc

t = 13.56 Gyr, z = -0.00

CK 2015; Haynes & CK 2019; Vincenzo & CK 2020; CK 2021

Q1/3 What is "inside-out" formation of galaxies?

- Hydrodynamical simulations allow us to look back the galaxy disc and measure the properties as a function of radius.
- Since Galaxy radius itself grow, we normalize them by the half-mass radius at each time:

 $d/d_{1/2}$

Vincenzo & CK 2020, MNRAS, 496, 80

Radial dependence of SF, infall, outflow

Universal outflow/infall profile

Q2/3

What is the role of gas flows in disc formation?

We traced the orbits of <u>gas</u> particles in presentday disc and identified:

$$\begin{array}{l} \mbox{infall } (d_{\mbox{present}} < d_{\mbox{past}} \ \& \ h_{\mbox{present}} < h_{\mbox{past}}) \\ \mbox{radial flow } (d_{\mbox{present}} < d_{\mbox{past}} \ \& \ h_{\mbox{present}} \sim h_{\mbox{past}}) \end{array}$$

d: galactosentric distance, h: height from the disc plane

Vincenzo & CK 2020, MNRAS, 496, 80

Gas flows – tracing gas particles Infall: metal-poor, low α

Q3/3

What is the role of stellar migration in disc evolution?

We traced the birth places of the <u>star</u> particles in present-day thin-disc back and identified:

migration ($r_{present} != r_{birth}$)

Vincenzo & CK 2020, MNRAS, 496, 80

Migration – tracing the stellar birth place

Migration – outwards!

Metallicity radial gradient

Vincenzo & CK 2020

Origin of high-α **population** (thick disk)?

If disk heating, age difference is not expected

 If migration, rotation difference is not expected

\rightarrow Satellite accretion

Vincenzo & CK 2020

Chemical Evolution (CE) of MW

- Classical bulge formed by gas-rich mergers/assembly in a short-timescale (z>1.5). Short CE timescale & high CE efficiency result in old, metal-rich, and high α/Fe stars.
- Stellar halo built up by mergers/stellar accretion of globular clusters (rather than dSph galaxies) to form Gaia-Enceladus and Sequoia streams. Short CE timescale but low CE efficiency result in old, metal-poor ([Fe/H] ~ -1.6), and high α/Fe stars. Many CEMP.
- Thick disk formed by stellar accretion (old age & no rotation), disk heating, or in-situ (dual or parallel flows)?
- Thin disk formed inside-out gas accretion and star formation, which create a metallicity radial gradient. Outflow occurs outside-in, following the universal outflow/infall profile. Radial inflow (~0.7km/s) steepens the metallicity gradient, while outward stellar migration (timescale ~5Gyr) flattens the gradient by 0.05 dex. Young, metal-rich, and low α/Fe stars.
- Pseudo bulge probably formed by secular evolution.
- Topics not covered: The first stars? (Ishigaki et al. 2018), Satellite dwarf galaxies? (Hayashi et al.)