Structure of Nearby Galaxies

Elias Brinks

University of Hertfordshire

STFC Summer School University of Hertfordshire 1-5 September 2008

1

Imaging HI in Galaxies

Content

- Some basics
- THINGS The HI Nearby Galaxy
 Survey
 - overview and PR material
 - rotation curves and Dark Matter
 - Star Formation thresholds and SF Law
 - the Violent Interstellar Medium
 - where is the edge?
- Future

Imaging HI in Galaxies

Galaxy classification

Related talks by: Dave Alexander Malcolm Bremer Judith Croston

Imaging HI in Galaxies

Galaxy Morphologies

ESO 325-G004

The Spindle Galaxy (NGC5866)

M 101/NGC 5457

LMC

NGC 1300

Why imaging HI? Tidal Interactions in the M81 Group

Stellar Light Distribution

21-cm HI Distribution

Advantages of HI

- one obtains morphology *and* velocity information
- it extends well beyond R_{25} so it traces the mass distribution out to larger radii than any other tracer
- HI in the outskirts is loosely bound ---> is sensitive to (past) tidal interactions
- HI is the reservoir for future star formation

But...

• it is a weak line

Some Basics

Current deepest HI emission line maps are from clusters at: **z ~ 0.2**

HI is terribly weak!!! Here is why...

HI is thermal line emission (mainly collisionally excited)

► $T_B = \text{const.} T_S \times \tau$ where $T_S \approx 5000 \text{ K}$ and $\tau \approx 0.01$, so $T_B \approx 50 - 150 \text{ K}$

▶ and for optically thick clouds, $T_B = T_S \approx 50 \text{ K}$

▶ sensitivities of interferometers are given usually in Jy beam⁻¹; e.g the VLA in D-array (45" resolution) in a 10 km s⁻¹ has a sensitivity in a few hours of 0.6 mJy beam⁻¹. The sensitivity in A-array (1.5" resolution) will be the same, 0.6 mJy beam⁻¹ for the same observing time.

$$\Delta S = \frac{k_B T_a}{\eta_a A \sqrt{N(N-1)\Delta t \Delta \nu}}$$

Some Basics

▶ from the conversion from Jy beam⁻¹ to Kelvin it follows that for VLA Darray (45") 0.6 mJy beam⁻¹ corresponds to ~2 K (for emission filling the beam, that is). However, for A-array (1.5") this corresponds to ~180 K, i.e. HI becomes hard to detect.

Deep HI surveys exist only for nearby objects at modest resolution

• Conversely, at high z, where you need high angular resolution to resolve your targets, sensitivity is insufficient with state of the art telescopes.

$$\Delta S = \frac{k_B T_a}{\eta_a A \sqrt{N(N-1)\Delta t \Delta \nu}}$$

Hence, the need for vastly increased collecting area, i.e. the Square Kilometre Array or SKA

On a historical note, the original specifications for the SKA leading to its target size were that it should allow detailed HI studies of spiral galaxies like M 51 at a redshift of z = 1.0

Some Basics

It therefore won't be surprising that most deep (i.e. high-z) studies, or ultra-high angular resolution work (VLBI) probe non-thermal continuum (e.g., synchrotron) emission or, in the case of spectral lines, masers.

There is a lot more that can be said about all this. For example, I haven't at all mentioned the possibility of detecting HI in absorption at high z, in which case the intensity of the background rather than the intervening HI sets the detection threshold.

• Front: F. Walter (PI), D. Tamburro, <u>A. Usero</u>, I. Bagetakos,

V. Buenrostro-Leiter, A. Portas

 Back: F. Bigiel, <u>A. Leroy</u>, R. Kennicutt, J. Rich, S-H. Oh, M. Zwaan,
 W. J.G. de Blok (Co-I), E. Brinks (Co-I), C. Trachternach Michele Thornley (not pictured)

The HI Nearby Galaxy Survey

 ~500 hours: B, C & D arrays -- Large NRAO VLA program (2003-2006)

- 34 galaxies: Sa Irr
- Resolution ~ 6" (100-300 pc)
- Velocity Resolution ~ 5 km s⁻¹
- Sensitivity ~ $5 \times 10^{19} \text{ cm}^{-2}$
- total: 1 Tbyte
- Targets complement SINGS, the Spitzer Infrared Nearby Galaxies Survey, a Legacy Survey, and the GALEX Nearby Galaxies Survey (NGS)

Name	Alias	Type	RA	dec	V _{rad}	W20	size	incl
			h m s.s	o / //	${\rm kms^{-1}}$	${\rm kms^{-1}}$	'×'	0
NGC628	M74	Sc	$01 \ 36 \ 41.7$	$+15 \ 46 \ 59$	656	77	10.5×9.5	35
NGC925		SBcd	$02\ 27\ 16.9$	+33 34 45	553	217	10.5×5.9	61
NGC1569		IBm	$04 \ 30 \ 49.0$	$+64\ 50\ 53$	-90	83	3.6×1.8	68
NGC2366		Irr	$07 \ 28 \ 47.6$	+69 11 39	99	114	8.1×3.3	90
NGC2403		SBc	$07 \ 36 \ 51.4$	$+65 \ 36 \ 09$	130	241	21.9×12.3	60
HolmbergII	UGC4305	Irr	$08\ 19\ 04.0$	+70 43 09	157	72	7.9 imes~6.3	47
M81dwA	PGC23521	Irr	$08 \ 23 \ 56.0$	$+71 \ 01 \ 45$	113	33	1.3×0.7	_
DDO53	UGC4459	Irr	$08 \ 34 \ 07.2$	+66 10 54	19		1.5×1.3	45
NGC2841		\mathbf{Sb}	$09 \ 22 \ 02.6$	+50 58 35	638	607	8.1×3.5	68
NGC2903		SBbc	$09 \ 32 \ 10.1$	$+21 \ 30 \ 04$	555	384	12.6×6.0	56
HolmbergI	UGC5139	Irr	$09 \ 40 \ 32.3$	$+71 \ 10 \ 56$	137	44	3.6×3.0	37
NGC2976		Sc	$09\ 47\ 15.3$	+67 55 00	3	135	5.9×2.7	61
NGC3031	M81	Sab	09 55 33.2	+69 03 55	-35	442	26.9×14.1	59
NGC3077		Sd	$10 \ 03 \ 20.6$	$+68 \ 44 \ 04$	13	90	5.4×4.5	41
M81dwB	UGC5423	Irr	$10 \ 05 \ 30.6$	$+70\ 21\ 52$	343	61	0.9 imes 0.6	67
NGC3184		SBc	$10\ 18\ 16.9$	$+41\ 25\ 28$	591	151	7.4×6.9	24
NGC3198		SBc	$10\ 19\ 54.9$	$+45 \ 32 \ 59$	662	321	8.5×3.3	70
IC2574	UGC5666	\mathbf{SBm}	$10\ 28\ 21.2$	$+68 \ 24 \ 43$	48	109	13.2×5.4	75
NGC3351	M95	SBb	$10 \ 43 \ 57.8$	$+11 \ 42 \ 14$	778	280	7.4×5.0	42
NGC3521		SBbc	11 05 48.6	$-00 \ 02 \ 09$	809	462	11.0×5.1	66
NGC3621		SBcd	$11\ 18\ 16.0$	-32 48 42	726	278	12.3×7.1	66
NGC3627	M66	SBb	$11\ 20\ 15.0$	+12 59 30	726	377	9.1×4.2	57
NGC4214		Irr	$12\ 15\ 38.9$	+36 19 40	290	86	8.5 imes 6.6	42
NGC4449		Irr	$12\ 28\ 11.2$	$+44 \ 05 \ 36$	202	143	6.2×4.4	56
NGC4736	M94	Sab	$12 \ 50 \ 53.0$	$+41 \ 07 \ 14$	309	232	11.2×9.1	35
DDO154		Irr	$12 \ 54 \ 05.2$	$+27 \ 08 \ 55$	373	93	3.0×2.2	44
NGC4826	M64	Sab	$12 \ 56 \ 43.7$	$+21 \ 40 \ 52$	406	315	10.0×5.4	60
NGC5055	M63	Sbc	$13\ 15\ 49.2$	$+42 \ 01 \ 49$	502	400	12.6×7.2	56
NGC5194	M51a	Sbc	$13\ 29\ 52.7$	+47 11 43	463	199	11.2×6.9	30
NGC5236	M83	SBc	$13\ 37\ 00.8$	-29 51 59	515	281	12.9×11.5	46
NGC5457	M101	SBc	14 03 12.5	$+54\ 20\ 55$	241	188	28.8×26.9	22
NGC6946		SBc	20 34 52.3	$+60 \ 09 \ 14$	51	235	11.5×9.8	31
NGC7331		SAb	$22 \ 37 \ 04.1$	$+34\ 24\ 56$	816	520	10.5×3.7	71
NGC7793		Scd	23 57 49.7	-32 35 30	229	192	9.3 imes 6.3	53

Data form 3-D cubes with axes: α , δ , V

Image cube size (typically): 1024 x 1024 x 100

Walter et THNGS, 2008

Multi- λ Database

 multi-wavelength data from SINGS (Kennicutt et al. 2003) and GALEX Nearby Galaxy Survey (Gil de Paz et al. 2007) •

THINGS Showcase

NASA Spitzer Space Telescope and NRAO VLA

Dwarf Galaxies in THINGS -- The HI Nearby Galaxy Survey M 81 dwarf A Holmberg I **Dwarf Galaxies** of the M81 group in THINGS scale: 5 kpc 15.000 light years color coding: Atomic Hydrogen (HI) (Very Large Array) Old stars Holmberg II IC 2574 (Spitzer) Star Formation (Galex & Spitzer) Image credits: VLA THINGS: Walter et al. Spitzer SINGS: Kennicutt et al. Galex NGS: Gil de Paz et al.

THINGS Showcase

Spiral Galaxies in THINGS — The HI Nearby Galaxy Survey

THINGS Showcase

Fabian Walter ... Max Planck Institute for Astronomy

Frank Bigiel, Adam Leroy, Domenico Tamburro

- What is the lag between spiral arms seen in the HI and in SF tracers?
- Does the Schmidt Law hold at 500 pc? Does it vary with galaxy or scale?
- How do proposed SF recipes perform in THINGS?

Erwin de Blok ...Cape Town/Mount Stromlo ObservatorySe-Heon Oh, Joshua Rich, Clemens Trachternach (Bochum)

- Rotation curves, mass-modeling and testing whether CDM profiles hold.
- Measuring non-circular motions and their effect on mass-models.
- Testing the multi-scale clean algorithm and its effect on structure measures.

<u>Elias Brinks ...</u>

University of Hertfordshire

Ioannis Bagetakos, Valeria Buenrostro Leiter, António Portas, Antonio Usero

- What are the distribution and energetics of HI holes?
- Where are the edges of HI disks? Are they sharp?
- How does the warm/cold HI breakdown vary with environment?

Martin Zwaan (ESO)

• How does THINGS compare to observations of DLAs?

For every galaxy produce models with $\Upsilon^{3.6}$ fixed to predicted value based on IRAC 3.6 µm and with $\Upsilon^{3.6}$ free

NFW model

$$\rho_{\rm NFW}(R) = \frac{\rho_i}{\left(R/R_s\right)\left(1 + R/R_s\right)^2}$$

$$V(R) = V_{200} \left[\frac{\ln(1+cx) - cx/(1+cx)}{x[\ln(1+c) - c/(1+c)]} \right]^{1/2}$$

With
$$x = R/R_{200}$$
 and $c = R_{200}/R_{s}$

Isothermal sphere

1

$$\rho_{\rm ISO}(R) = \rho_0 \left[1 + \left(\frac{R}{R_C}\right)^2 \right]^{-1},$$

$$V(R) = \sqrt{4\pi G \rho_0 R_C^2} \left[1 - \frac{R_C}{R} \arctan\left(\frac{R}{R_C}\right) \right]$$

$$V_{\infty} = \sqrt{4\pi G \rho_0 R_C^2}.$$

Rotating THINGS

 $\Upsilon^{3.6}$ free

Rotating THINGS

Results from Rotation Curves

- Stellar mass-to-light ratios derived using population synthesis and Spitzer data agree very well with "best fit" values
- No need for minimum/maximum disk assumptions
- NFW and ISO models fit bright galaxies equally well, but beware of M/L trade-offs
- Faint galaxies prefer ISO
- Non-circular motions are < 2% of V_{max}
- Elongation estimator of Dark Matter potential is compatible with **no** elongation

How do SF Recipes Perform in THINGS?

• Can we turn this...

Gas distributions from THINGS + IRAM 30-m HERA or BIMA SONG

How do SF Recipes Perform in THINGS?

• ... into this?

SFR distributions from GALEX + SINGS

Star Formation Rate Maps

use combination of UV and 24 μm [obscured and unobscured SF]
Q: why not Hα? A: Availability and FOV; sensitivity at large R

The missing piece: Molecular Gas

Ongoing CO survey at IRAM 30-m telescope using HERA array: Example: CO(2-1) channel maps in NGC 6946 Proposal approved to map ~15 THINGS galaxies

SFR vs. Gas Density - all THINGS spirals

Results on SF law

- •HI turns almost completely molecular above 9 M_{\odot} pc⁻² (12 M_{\odot} pc⁻² when including He)
- Where gas is predominantly molecular, the Schmidt-Kennicutt law has a powerlaw index $N = 1.05\pm0.20$
- In this regime the SFE is constant; the gas depletion time corresponds to 1.8 x 10⁹ yr
- Where HI dominates, SF is less efficient, the efficiency decreasing monotonically with radius

Prediction Maps - NGC 628

• "Prediction maps" for various SF recipes: example: NGC628

Star Formation Recipes in THINGS

Star Formation Recipes in THINGS

More results on SF law

• Where gas is predominantly molecular, the SFE is constant; the gas depletion time corresponds to 1.8 x 10⁹ yr. There is no dependence on radius, gas or stellar surface densities, midplane pressure, Toomre-Q, etc.

• Where HI dominates, SF is less efficient, the efficiency decreasing monotonically with radius. SFE is set by the ratio of H_2 /HI gas surface densities

• Below a set HI surface density, gas might be stable against GMC formation and SF dies out

• Basically, GMC formation is set by mid-plane pressure which in turn depends most directly on stellar surface density

• Toomre-Q is not a good predictor for a SF threshold

The Violent Interstellar Medium in Nearby Galaxies

HI holes in THINGS

Up to several hundred SNe explode within a small (few tens of pc) volume and within a short (<50 Myr) time, creating ~100pc to 1-2 kpc large cavities.

Observational evidence for SN origin:

- expanding $H\alpha$ shells
- OB associations or remnant cluster
- associated coronal gas (X-rays)
- associated UV (GALEX NGS)
- CO and HII regions coinciding with HI rims

From theory:

- energetics commensurate with SN origin
- hydrodynamical and MHD simulations can explain SN-powered shells
- Superbubble size distribution fits prediction from HII region luminosity function

Results on HI holes

- •~1000 holes identified in 20 galaxies
- Relations with Hubble Type
 Holes in dwarfs are larger then in spirals
 Holes in dwarfs are older than in spirals
- Energy input in ISM is independent of Hubble type
- Can be used as a measure for SN rate and SFR
- Determine the 2-D and 3-D porosity of the ISM

Radial gas column density profiles

Azimuthally averaged, radial HI profiles HI: solid line H₂: dashed line HI+H₂: dot-dash line

HI radial profiles in 30° sectors

Portas et THINGS

Radial gas column density profiles

Radial profiles in sectors, shifted so as to align their edges.

The Edges of THINGS

Same as left panel; the drawn line is the average of all segments.

Portas et THINGS

Ionisation by the Extragalactic Radiation Field?

Azimuthally averaged radial profiles of all targets based on a 30° sector along the major axis.

Edges of THINGS

The

Same as left panel, but shifted so as to align their outer edges.

Results on HI edges

•HI disks have a well-defined edge

•Edge of the disk within a galaxy is dependent on azimuth within a galaxy

Edges of individual galaxies are similar

•HI edge can be parameterised by a Sersic-type r^{1/n} profile

•lonisation by an extragalactic radiation field doesn't seem a plausible explanation as the edge "sets in" at too high a column density value (few x 10²⁰ atom cm⁻² versus few x 10¹⁹ atom cm⁻² for ionisation)

Summary

• THINGS: HI survey providing data of uniform quality

•High-quality rotation curves:

- no declining curves
- non-circular motions small; no DM halo elongation
- ISO halos preferred over NFW for low-mass galaxies

Improved understanding about SF

• Schmidt-Kennicutt Law --> N=1.05+/-0.2 for R < $0.4r_{25}$ •SFR/E drops dramatically for larger R •mid-plane pressure drives H₂/HI and hence GMC formation •SFE fixed where H₂ dominates

•HI holes compatible with SN origin --> SN and SF rate

• HI edges are sharp ...but not due to ionisation by the extragalactic radiation field

Future

• Data release: imminent!

•THINGS-South in progress

• Future VLA HI surveys @ same resolution/sensitivity:

2 large VLA NRAO programs (2007 -):

- Little THINGS (PI: D. Hunter): dwarf sample
- VLA-ANGST (PI: J. Ott): D < 4 Mpc

Soon of order ~1500 hours at VLA, ~120 galaxies at 6" resolution / high sensitivity available. This is at the limit of what is possible with state of the art instruments (VLA, WSRT, GMRT, ATCA)

--> next major leap: SKA

What is the value of THINGS?

THINGS a benchmark for the SKA

THINGS represents the ultimate of what is possible with current instruments and provides a *window* on what will become possible routinely with an SKA in the Local Universe, and across a vastly increased volume of the Universe out to where evolutionary effects become evident. An SKA will allow us to:

• in 24hr achieve the same sensitivity as THINGS at 1" and 10 km s⁻¹ out to Coma (~100 Mpc)

• do resolved, few kpc, studies out to z = 0.2 - 0.5 (2.4 - 5 Gyr look-back time) at 0.5-0.6" or 1.7 to 4 kpc resolution; HI mass limit 6-8 10⁸ M_{\odot} (or 1/10th MW)

• push down to 4×10^{17} at cm⁻² --> cosmic web

• search for extra-planar HI (galactic fountain, HVC, etc.)

The End