

Figure 4. Hevelius' (1690a) chart of the region, showing both R Hya and U Hya, R Hya is the faint star in the tail of Hydra, to the right of the tail of the crow: it s just to the right of γ Hya and ψ Hya. U Hya is located between Sextans and Crater, just above the body of Hydra,

Star and Stellar Evolution

- Stars: are governed by simple physics
- Properties determined by
 - Mass
 - Composition
- Simple physics + simple properties give complex behaviour

Outline

- Issues of stellar physics
- AGB evolution
- Mass loss
- Interacting winds
- Galactic ecology

Stars begin and end their lifes within the interstellar medium (ISM)

Orion's nursery

HR diagram

- Main sequence
- Evolved branches
- White dwarf branch

- large forbidden regions
- strict limits

HR physics

- Limits of the HR diagram
 - nuclear burning temperature (novae)
 - Hayashi track
 - : hydrogen-burning limit

• main sequence: L proportional to M^{a:}

 $-M < 7 M_{o}$ a = 4.5

 $-M > 7 M_{o:} a = 3$

• Forbidden regions: traces stellar structure

Stellar physics

- Hydrostatic equilibrium
 - Gravity versus heat
 - Gravity versus equation of state
 - gaseous stars require an energy source
- Virial theorem
 - kinetic energy is minus half the potential energy
 - stars have negative heat capacity
 - less energy generation -> star becomes hotter
 - stablizes nuclear reactions

Energy transport

- radiative for small temperature gradient
- convective for steep temperature gradient
- most stars have both convective and radiative regions

- Turbulence itself is hard to model
 - chaotic
 - overshoot and undershoot
- Gives mixing and dredge-up

Convection

- predicts a fixed Tgradient
- convective star is easy to model

Stellar structure

possible configurations

- Core burning
 - central temperature gradient
 - if convective: extended life expectancy
- Shell burning
 - no central temperature gradient
 - convective only above the nuclear burning zone
- Non-burning
 - degenerate

Nuclear burning

- deuterium: short-lived but inevitable
- hydrogen
 - pp, chain 1, 2 or 3 (<1.1Msun)
 - CNO
- helium burning: triple alpha
- C, O, Si burning
- s and r-process: neutron captures
 - not well understood

Elemental abundances

Dominant energy source

- f = E(nuclear)/U(gravity)
- low mass star (-> white dwarf) $f \sim 50$
- high mass star (-> neutron star) f ~0.5

- Gravity is the main energy source in the Universe
- Nuclear burning is dominant during stable phases

Stellar winds

dominates evolution for

- high-mass stars
- evolved stars

main problem in stellar evolution

- mass loss rate
 - non-linear tracers
- wind energy
- wind composition
- driving mechanisms

Asteroseismology

- oscillations induced by convection
- standing waves on the surface
- frequencies trace the temperature/density/ rotation of the interior

The Sun

- Structure very well known
- Abundances rather uncertain
 - Z = 0.012 (spectrum)
 - -Z = 0.016 (seismology)
 - Z = 0.02 (text books)
- Neutrino problem solved

Evolutionary phases

AGB

- core hydrogen burning: main sequence
- hydrogen shell burning: RGB
- core helium burning: HB
- helium shell burning:
- helium flashes:
 thermal-pulsing A
- carbon core burning: su

thermal-pulsing AGB super-AGB

More massive stars show multiple shell burning

Schoenberner evolution

- AGB
 - Inert C/O core
 - He-burning shell,
 H envelope
- Thermal pulsing AGB
 - Regular He flashes
 - High mass loss

- Post-AGB
 - Mass loss ceases, photosphere collapses
 - Temperature increases
- Planetary nebula
 - Ionized ejecta
 - Inert white dwarf star

TP-AGB evolution

- Semi-regulars
 - Period 50-150 days
- Mira variables
 - 15-500 days
- OH/IR stars
 - 300-1800 days
 - OH maser emission

- Increasing mass loss
 - -10^{-8} to 10^{-4} Msol/yr
- Increasing period
- Increasing amplitude

Third dredge may cause carbon-star formation

Hot bottom burning may prevent this

Dust

- AGB winds form dust
 - silicates
 - amorphous carbon
- Stars become highly self-obscured at optical wavelengths
- mid-infrared emission due to heated dust
- Missing million years of stellar evolution

Open problems

- Mass loss process
 - Driving force
 - Dependence on stellar properties
- Structure formation
 - Spherical winds
 - But ejecta show intricate structures

- Galaxy evolution
 - Carbon and dust enrichment of galaxy
 - Mass return at low metallicity
- Stellar evolution
 - Initial-final mass
 - Late helium flashes

Mass loss

Multi-step process

- Pulsations extend atmosphere
- Molecule/dust formation
- Radiation pressure on dust and molecules drive a wind

Mass loss depend on:

- pulsation
- stellar temperature
- surface gravity
- composition and metallicity
- No predictive parametrization exists

Mass loss parametrizations

- (i) $\log \dot{M} = aP + b$ (*ii*) $\dot{M} = a M_{\rm i}^{-2.1} L^{3.1} R M^{-1}$
- (*ii*) $\dot{M} = a L^{2.47} T^{-6.8} M^{-1.95}$ (iv) $\dot{M} = a L^{1.05} T^{-6.3}$

Vassiliadis & Wood1993 Bloecker 1995 Wachter et al. 2002 van Loon et al. 2005.

- Strong temperature dependence
- Period dependence is controversial
- Suggestive relation including radius:

$$\dot{M} \sim \left(\frac{M}{R}T\right)^{\alpha}L^{\gamma}$$

Mass losing AGB stars

Spectra of carbon-rich stars

LMC

Spitzer spectra

Superwind trigger

- Superwind occurs at all Z
- Mass loss for O-rich stars is metallicitydependant
- Mass loss for C-rich stars is not

- Star evaporates if
- C O higher than critical value
- L larger than critical value
 - $L~Z^{-4/3}$
- binary trigger

Mass loss variability three time scales

- 10⁴⁻⁵ year: TP spikes
 - TT Cyg
- 10²⁻³ year: rings

 $-L_{2}$ Pup

• 10 year: extinction variations

Dust driven instability

- 2-d models indicate an irregular structure, not resembling rings
 - RT instabilities

Woitke 2006

Shapes

- Round
- Elliptical
- Bipolar
- Multipolar

What did the star do?

Interacting winds

- Mira variable ejects a shell, at leisurely speeds
- Afterwards, the hot remnant blows a light wind at much higher speeds into the ejecta
- The fast wind sweeps up a shell of slower gas (snowplough)
- This amplifies initial asymmetries

Interacting winds

M2-9

Planetary Nebula M2-9 PRC97-38a • ST Scl OPO • December 17, 1997 B. Balick (University of Washington) and NASA

HST • WFPC2

Very fast winds

- Hot region inside the nebula
- Hot region tries to puncture the nebula
- Hydrodynamic models by Vincent Icke can fit many of the observed structures

NGC 6302: multipolar

• Left: full HST image.

Right: close up of the core

Initial asymmetries

- Hydrodynamical models require more mass ejected towards the equator than to the poles
 – Disk-like structure
- Observationally, not known for Mira variables
- could be caused by
 - Binaries
 - Cannibalized planets
- Work for the VLTI

Disk discoveries

September 2007

Angular momentum

- Shaping requires angular momentum
 not possible from stellar rotation
- During stellar evolution, angular momentum is in cold storage
- Superwind taps angular momentum reservoir
 binary orbits

AGB – ISM interface

- Stellar wind sweeps up ISM
 - stationary shock at 0.5-2 pc
 - interstellar wall
- Mixing occurs in the wall
- Wall is shaped by stellar motion

Mira: the wonderful

- Brightest, and oldest known, variable star
 - discovered 1584
 - probably known before
 (suggested candidate for star of Bethlehem)
- Moving at high speed through the Galaxy
 expect bow shock and tail

- Mira's wonderful tail
 - 0.5 million year old
 - stellar wind
 - blowing into the ISM

Galactic Ecology

- ISM conditions determine star formation
 - location, efficiency, metallicity, IMF, angular momentum
- Stars determine ISM conditions
 - energy deposition, ionization
- Stars re-form the ISM
 - Ejecta: gas, dust, kinetic energy
- ISM forms a new generation of different stars

Galactic evolution and stellar evolution intertwine