

Big Bang nucleosynthesis	
Expansion implies during early phase, Universe was dense and hot	
Particles disassemble at high tempo molecules disassociate - atoms ionise - nuclei disassemble - nucleons disassemble -	eratures: atoms are separated electrons are removed nucleons are removed quarks (sub-nuclear particles)
Idea grew that, in an expanding and cooling Universe, nucleons would assemble to produce <i>all</i> of the elements \rightarrow Big Bang nucleosynthesis [Alpher, Bethe & Gamow 1946/48 αβγ]	
Idea was optimistic: lack of stable nuclei with atomic mass 5 and 8 prevented easy formation of nuclei heavier than ⁴ He [Alpher & Herman] Big bang nucleosynthesis produces ¹ H, ² H, ³ He, ⁴ He and ⁷ Li only	
Carroll & Ostlie, An Introduction to Mod	ern Astrophysics, 1996, §27.2 & 28.1

Big Bang nucleosynthesis

Stellar nucleosynthesis	
Overall:	4p + 2e⁻ → ⁴He + 2v _e + 6γ
Mass defect	= [4×1.00728 + 2×0.00055 – (4.00260-2×0.00055)] amu = 0.02872 amu
Q = mc ² = 0.02872 amu × 1.661×10 ⁻²⁷ kg amu ⁻¹ × (2.998×10 ⁸ m s ⁻¹) ² = 4.288×10 ⁻¹² J = 26.76 MeV	
This energy is released into the star, except for the escape of some energy carried away by neutrinos.	
This energy is just enough to replenish energy radiated from the star's surface structure of star adjusts to keep this balance.	
Such fusion reactions happen because the star is hot, not vice versa.	
КвЦТ	24 BUILDING FUTURES

