#### The Chandra Legacy Survey of Cygnus OB2

## Nick Wright

Harvard-Smithsonian Center for Astrophysics Jeremy Drake, Mario Guarcello, Tom Aldcroft, Vinay Kashyap, Janet Drew, Ettore Flaccomio, Erik van der Veen, Jorick Vink, Francesco Damiani

#### **Demographics of Star Formation**









Ophiuchus no O stars 0-5 Myr old  $M_{\star} \sim 100 M_{\odot}$ d ~ 130 pc (Wilking et al. 2008)

Orion 1 O star (20 OBs) M**★** ~ 2,000 M<sub>☉</sub> d ~ 400 pc (Hillenbrand 1997, Muench et al. 2008)

Westerlund 1 ~140 O stars 0-2 Myr old 2-3 Myr old M<sub>★</sub> ~ 50,000 M<sub>☉</sub>  $d \sim 4 \text{ kpc}$ (Clark et al. 2005, Brandner et al 2008)

R 136 (30 Dor) > 300 O stars2-5 Myr old  $M_{\star} > 10^5 M_{\odot}$ d ~ 50 kpc (Brandl et al. 2007, Crowther et al 2010)

## Demographics of star formation

| Ophiuchus<br>no O stars<br>~ 100 $M_{\odot}$<br>d ~ 130 pc | Orion<br>1 O star<br>~ 2,000 M <sub>⊙</sub><br>d ~ 400 pc |  | Westerlund 1<br>~140 O stars<br>~ $5 \times 10^4 M_{\odot}$<br>d ~ 4 kpc | R 136<br>> 300 O stars<br>> $10^5 M_{\odot}$<br>d ~ 50 kpc |
|------------------------------------------------------------|-----------------------------------------------------------|--|--------------------------------------------------------------------------|------------------------------------------------------------|
| Cygnu                                                      | us OB2                                                    |  | 65 O star<br>M <sub>*</sub> ~ 10 <sup>4</sup><br>d ~ 1.5 kp              | s<br>-10 <sup>5</sup> M <sub>☉</sub><br>ວc                 |

# Cygnus OB2

- Largest young cluster in the northern hemisphere, total mass ~ (4-10) × 10<sup>4</sup> M<sub>☉</sub> (Knödlseder 2000)
- Center of the Cygnus X GMC
- d ~ 1.5 kpc (Hanson 2003)
- Age ~ 1-3 Myrs (Hanson 2003), but also evidence for older population (Drew et al. 2008)
- 65 O-type stars (inc. 2xO3), hundreds of B-type stars.
- Largest group of young stars within 2 kpc!



IPHAS Hα + Spitzer IRAC 4.5µm, 5.6µm





### **Problems Studying Cygnus OB2**

- High extinction: A<sub>V</sub> ~ 5-10 (varies over the region)
- Large area on the sky: Size ~ 2° diameter
  r<sub>hl</sub> = 13' (5 pc)
  (Knödlseder 2000)
- Contaminants: Large population of foreground and background field stars.
- Low mass population can't be confidently identified using optical or infrared photometry alone!



Knödlseder 2000

### X-rays from stars

Nearly all stars emit X-rays:

 High mass stars via shocks in radiativelydriven stellar winds

(e.g. Seward 1979, Berghoefer et al. 1997).

 Low mass stars via flares in a magnetically-confined plasma (e.g. Wilson et al. 1966, Vaiana et al. 1981).



YOHKOH SXT 0.25-4.0 keV



### X-rays as a Diagnostic of Youth

- Young stars more X-ray luminous than older stars.
- Corona powered by a dynamo driven by stellar rotation.
- Stars spin-down as they age, therefore dynamo and X-ray emission weakens.
- X-rays efficiently separate young stars from older field stars without biases.



Micela 2003

## X-ray observations of Cygnus OB2

Two Chandra observations of Cygnus OB2 in 2004:

- Butt et al. 2006
- Albacete Colombo et al. 2007
- Wright & Drake 2009
- Wright et al. 2010

X-ray + IPHAS + UKIDSS:

- 1700 X-ray sources detected
- Optical / near-IR associations for ~1500 sources (~90%)
- First Cygnus OB2 study complete to ~1  $M_{\odot}$



Wright & Drake 2009

## Cygnus OB2 Chandra Legacy Survey

- Grid of 36 Chandra ACIS-I pointings, each 30ks
- Total survey area ~1 sq. deg.
- Central 0.5 sq. deg. imaged 4 times, total exposure ~120ks
  - >95% complete at 1  $M_{\odot}$
  - >50% complete at 0.5  $M_{\odot}$
- Complementary data:
  - IPHAS + GTC/OSIRIS optical
  - 2MASS + UKIDSS near-IR
  - Spitzer IRAC + MIPS mid-IR
  - Herschel, VLA, e-Merlin, INTEGRAL, IRAM, KOSMA



## **Current Survey Status**

- All 36 observations performed January – March 2010.
- X-ray source detection on individual and combined observations performed ~15,000 sources detected.
- Visual inspection, X-ray photon extraction and comparison with other catalogs follows.
- Source list converging to ~10,000 sources – vast majority have optical, nearand mid-IR photometry!



#### **Foreground Sources**



 Foreground stellar X-ray population removed using IPHAS color-color diagram (Drew et al. 2005, Sale et al. 2009)

- Differently-reddened populations can be separated
- ~10% of Chandra-IPHAS sources found to foreground contaminants

Wright et al. 2010

#### Stellar ages from the near-IR CMD



Ages from near-IR CMD and pre-MS isochrones:

- Central field ~  $3.5 \pm 1$  Myr
- Northern field ~ 5.25  $\pm$  1.5 Myr

Age difference between fields?

Better age estimates from optical CMD (coming soon!)

Wright et al. 2010

## Large Age Spreads in Massive Clusters

#### Cygnus OB2

- Wider population of older massive stars (Hanson 2003, Comerón et al. 2008)
- 5-7 Myr population of A-type stars to the south (Drew et al. 2008)
- Low-mass stars aged 5+ Myrs to the north-west (Wright et al. 2010)
- The Carina Nebula:
  - Distributed population of X-ray sources, likely older (Feigelson et al. 2011)
- 30 Doradus:
  - Star formation spread over 10+ Myrs, with spatial evolution over the cluster (De Marchi et al. 2011)

#### **Initial Mass Function**



#### Kiminki et al. 2007

#### (Initial?) Mass Function



Masses from CMD / spectra:

- Complete to ~ 1  $M_{\odot}$  (exc. A/B stars)
- Salpeter-like slope  $\Gamma = -1.09$
- Steepens at high-masses (age-steepening?)



#### Wright et al. 2010

## Impact of Massive Stars in Cygnus OB2





IPHAS INT/WFC (Hα)



IPHAS INT/WFC (Hα)

HST/ACS (F606W / F814W filters)

#### Erosion of Proto-planetary Disks



Low fraction of JHK excess stars (Albacete-Colombo et al. 2007, Wright et al. 2010):

- H-K inner disk fractions ~ 6-8%
- Low compared to other regions (typical 20-40% for 2 Myr population, e.g. Hillenbrand 2005)
- Evidence for disk photoevaporation by OB stars?

Wright et al. 2010

## Another Interpretation: Stars are Older



- Inner disk fraction of ~5% appropriate for a 5 Myr population (Wright et al. 2010).
- Highlights risk of interpreting results without fully understanding region being studied.

#### Hillenbrand 2005

#### Identifying Proto-planetary Disks

- Mid-IR photometry a better probe of circumstellar disks.
- X-ray + Spitzer allows pre-MS stars with and without disks to be identified:
  - 2122 stars with disks
  - 5080 stars without disks
- Mid-IR disk fraction ~30%



## **Disk fractions from Spitzer/IRAC**



- X-ray + Spitzer distribution of stars with and without disks in Cygnus OB2.
- Compared to positions of known O-type stars.
- Color-coded based on their projected exposure to UV flux:
  - Green = Very high UV flux
  - Orange = High UV flux
  - Red = Moderate UV flux
  - Black = Low UV flux

### **Disk Photoevaporation**



- Disk fraction decreases as UV bolometric flux increases.
- Factor of ~2 difference in disk fraction between high and low UV 'dose'.
- Cannot be explained by known age differences.
- Shortened disk lifetimes must affect planet formation!

## Dynamical Survey of Cygnus OB2

- Radial velocity survey using MMT/Hectospec multi-fiber optical spectrograph.
- Spectra for all X-ray members of CygOB2 above 1M<sub>☉</sub> ~ 5000 stars to *i*=20 mag
- Radial velocities measured from Ca II triplet ( $\sigma_{\text{RV}} \sim$  3-5 km/s).
- Proper motions from multi-epoch wide-field surveys (e.g. IPHAS, UKIDSS) spanning ~5-8 years:  $\sigma_{PM} = 0.4$  mas/yr = 3 km/s (at 1.5 kpc).





#### **Initial Dynamics Results**

- Radial velocity survey of 2004 Chandra data ~ 500 sources.
- Velocities match those from massive stars (Kiminki et al. 2007).
- No energy equipartition (dynamical mass segregation), yet mass segregation exists.
- Cluster is globally unbound, but dense low-velocity cores exist.



## Conclusions

- Cygnus OB2 an excellent region to study how star formation differs in extreme environments.
- Chandra X-ray observations + deep optical, near- & mid-IR photometry provides excellent census of YSOs.
- Ages, steepened IMF, and disk fractions implies generation of older stars exists alongside current 2 Myr population – large age spreads exist in massive clusters.
- Proto-planetary disk fraction inversely proportional to UV flux exposure - massive stars shorten the lives of disks (implications for planet formation).
- Dynamical survey suggests the association is unbound, but bound cores may survive.