CASU processing for VISTA

Mike Irwin Jim Lewis Eduardo Gonzalez-Solares Simon Hodgkin Aybuke Yoldas Marco Riello

- CASU responsible for all NIR processing for WFCAM & VISTA
- + optical mosaic camera processing for projects using MegaCam, Subaru, INT WFC, VIMOS, ESO WFI, VST

VISTA focal plane

Orion

M42 region

colour composite J,H,Ks

16kx13k pixels/ waveband

mosaic of 96 2kx2k images/ waveband

VISTA data flow – I

- raw data transfers on USB disk (Rice-compressed MEFs)
- ingest & verification -> raw data archive
- create off-line tape backups
- update calibration files monthly (flats, linearity, masks)
- parallel nightly processing at OB-level (darks updated)
 - stacked pawprint images instrumental signature removed
 - catalogue generation from pawprint images & conf maps
 - astrometric & photometric calibration
- header updates -> pawprint OB-level science products
- check derived QC info & sample of images
- processing web page updates and progress tracking
 - <u>http://casu.ast.cam.ac.uk</u>/surveys-projects/vista

VISTA DATA REDUCTION PROGRESS: COMMISSIONING

This page displays the reduction progress of VISTA data. Information is automatically updated hourly.

Night	Status	Nraw	Version	Summary Plots	Photometry Plots	Summary Info	Observation Log	Paranal ambient conditions	Size raw [Gb]	Size red [Gb]
009/10/15	REDUCED	363		GIF1 GIF2	GIF	summary	obs_log	nightmon	23.86	43.78
009/10/16	REDUCED	341		GIF1 GIF2	GIF	summary	obs_log	nightmon	25.53	137.65
009/10/17	REDUCED	470		GIF1 GIF2	GIF	summary	obs_log	nightmon	33.61	183.47
009/10/18	REDUCED	398		GIF1 GIF2	GIF	summary	obs_log	nightmon	29.51	154.95
009/10/19	REDUCED	505		GIF1 GIF2	GIF	summary	obs_log	nightmon	35.24	184.86
009/10/20	REDUCED	401		GIF1 GIF2	GIF	summary	obs_log	nightmon	29.76	192.84
009/10/21	Reduction status	448		GIF1 GIF2	GIF	summary	obs_log	nightmon	32.11	179.83
009/10/22	REDUCED	476		GIF1 GIF2	GIF	summary	obs_log	nightmon	36.66	204.01
009/10/23	REDUCED	589		GIF1 GIF2	GIF	summary	obs_log	nightmon	42.97	266.31
009/10/24	REDUCED	434		GIF1 GIF2	GIF	summary	obs_log	nightmon	30.17	131.61
009/10/25	REDUCED	454		GIF1 GIF2	GIF	summary	obs_log	nightmon	34.09	191.42
009/10/26	REDUCED	454		GIF1 GIF2	GIF	summary	obs_log	nightmon	33.89	192.52
009/10/27	REDUCED	492		GIF1 GIF2	GIF	summary	obs_log	nightmon	35.20	198.65
009/10/28	UNPROCESSED	15					obs_log	nightmon	0.92	
009/10/29	REDUCED	435		GIF1 GIF2	GIF	summary	obs_log	nightmon	33.04	191.13
009/10/30	UNPROCESSED	46					obs_log	nightmon	2.64	
009/10/31	UNPROCESSED	100					obs_log	nightmon	4.91	
009/11/01	UNPROCESSED	15					obs_log	nightmon	0.85	
009/11/02	REDUCED	340		GIF1 GIF2	GIF	summary	obs_log	nightmon	25.31	102.82
009/11/03	REDUCED	599		GIF1 GIF2	GIF	summary	obs_log	nightmon	47.72	249.12
009/11/04	REDUCED	656		GIF1 GIF2	GIF	summary	obs_log	nightmon	53.90	205.86

Table description :

Nraw: total number of raw images for the given night (this includes darks, flats, focus runs etc.).

Monitoring sky surface brightness

VISTA data flow - II

- detector level monthly photometric zpt updates
 - illumination correction tables
- mosaic OB-level tile image and create confidence map
- tile image cataloguing (Tangent Plane projection)
 - nebulosity filter 6 component pawprints
 - mosaic and correct for sky levels and distortion
 - generate tile catalogue
 - grout tiles to fix PSF and detector zpt variations
- check derived QC info & sample of images (cf. OB grade)
- ingest to post-processing database enables checks:-FITS header contents, file size, provenance and calibration files, exploration of long-term trends, survey progress, data access <u>http://casu.ast.cam.ac.uk/vistasp/imgquery/search</u>

astrometry; seeing; stellar ellipticity; sky brightness; magnitude zero-point trends

Silvered

Aluminised

Photometric ZP variation

Data Products – recap

• products consist of:

- calibrated single exposure images
- shifted "average" stack frames (pawprints) + conf maps
- calibrated stacked pawprint catalogues
- filled area tile images + confidence maps
- calibrated tile object catalogues
- sky background images, flats, darks, bad pixel mask
- science products are MEF files (images Rice-compressed)
- all QC parameters are stored in MEF headers

The Naming of Parts

- filenaming conventions
 - v20091102_00123.fit (raw & processed)
 - v20091102_00123_st.fit _st_cat.fits _st_conf.fit
 - v20091102_00123_st_tl.fit
 - dark_20091102_5_1.fit
 - J_flat_20091016.fit
 - sky_20091102_00123_J.fit
- ESO arcfile and origfile names in header
- as is the version no. currently v1.1** and OB grade

Image processing Steps

- Reset correction (debias inline)
- Dark correction
- Linearity correction
- Flat field correction
- Sky background correction *****
- Destripe controller level pickup
- Crosstalk, persistence and fringing corrections are not necessary

VIRCAM Stripes

Time Variable Sky

Available Sky Background Subtraction Algorithms

- Tilesky double pass combination of all observations in tile(s)
- Pawsky single pass combination of all observations in a pawprint with object masking iterated 'dynamically'
- Pawsky with object mask as above, but the mask is defined beforehand using e.g. deep stacked tiles
- Offset sky use a sky taken nearby (spatially & temporally)
- Pawsky and "half" tilesky minus ****

Before And After Background Correction

Flat Field Holes

-> Sky frame blobs (not stars)

General Detector Properties

- the VIRCAM detectors are non-linear (2–10%) @10k ADU
- the VIRCAM detectors do not use full 16 bit range

- saturation levels 24k-37k

Detector	Linearity (%)	Saturation (ADU)
1	2.33	33000
2	3.32	32000
3	3.79	33000
4	3.50	32000
5	1.98	24000
6	2.98	28000
7	1.99	35000
8	3.38	33000
9	3.31	35000
10	4.44	35000
11	4.64	37000
12	2.55	34000
13	9.99	33000
14	2.72	35000
15	1.74	34000
16	3.28	34000

Astrometric Calibration 2MASS - VISTA

WCS - ZPN projection

$$r' = r + k_3 r^3 + k_5 r^5 \dots$$

NB. tiles are TAN projection

Linear solution per detector

→ rms < 100 mas

Tabulated systematics from stacked residuals

→ sys < 25 mas

Astrometric Calibration 2MASS - VISTA

WCS - ZPN projection

$$r' = r + k_3 r^3 + k_5 r^5 \dots$$

NB. tiles are TAN projection

Linear solution per detector

→ rms < 100 mas

Tabulated systematics from stacked residuals

→ sys < 25 mas

VIRCAM z-band

VIRCAM Ks-band

VIRCAM z-band

Photometric calibration (2MASS incl. touchstone fields)

- colour equations to convert 2MASS to instrumental system
- 2MASS s:n> 10 in J,H,Ks and
 - $0 < (J-Ks) < 2 \& 0 < (J-Ks)_0 < 1$ (extinction corr)
 - 0 < (J-Ks) & (J-Ks)_0 < 1 & (J-Ks) < 0 (update extcorr)</p>
 - no restriction

- NIR ~100-1000 "standards" per pointing
- required to be stellar and unsaturated
- Zpt + error per pointing; can compare with FS fields
- monitor long term Zpt behaviour
 - average monthly detector Zpt offsets
 - illumination corrections

Illumination correction J-band

Relative QE for VISTA detectors

Variation of x,y pixel scales

Variation of x,y pixel scales

VISTA photometric distortion

Inherent illumination correction

Tile exposure map

Issues with tiles

- imperfect sky subtraction pawprint matching
 - low level discontinuous artefacts
- variable PSF across single pawprints
 - each detector has different PSF
- variable seeing conditions
 - each pawprint has different PSFs
- variable saturation levels
 - each detector has different levels
- variable extinction during tile observation
 - variation of Zpt over tile
- astrometric distortion = need for
 - photometric distortion correction (sky -v- objects)
- interpolation options (NN, drizzle, cubics)
 - varying correlated noise patterns
- "interesting" MJD pattern

MJD variation across tiles

Innovative software solutions

- nebuliser
 - removes complex background variations
 - enhanced object detection & parameterisation
- mosaicer
 - CASU tiling software developed for VISTA
- grouter
 - applied to tile catalogues to remove the effect of PSF variations and photometric throughput (+ MJD column)
- psf'ers
 - automatically generates detector-level PSFs
 - and performs PSF photometry

Nebuliser -> M17 K-band WFCAM

Nebuliser -> M17 K-band WFCAM

Nebuliser -> M31 field 23 MegaCam

Nebuliser -> M31 field 23 MegaCam

