CASU processing for VISTA

- CASU responsible for all NIR processing for WFCAM & VISTA
- + optical mosaic camera processing for projects using MegaCam, Subaru, INT WFC, VIMOS, ESO WFI, VST
VISTA focal plane
Orion
M42 region
colour composite J,H,Ks
16k x 13k pixels/
waveband
mosaic of 96 2k x 2k images/
waveband
VISTA data flow – I

- raw data transfers on USB disk (Rice-compressed MEFs)
- ingest & verification --> raw data archive
- create off-line tape backups
- update calibration files monthly (flats, linearity, masks)
- parallel nightly processing at OB-level (darks updated)
 - stacked pawprint images instrumental signature removed
 - catalogue generation from pawprint images & conf maps
 - astrometric & photometric calibration
- header updates --> pawprint OB-level science products
- check derived QC info & sample of images
- processing web page updates and progress tracking
 - http://casu.ast.cam.ac.uk/surveys-projects/vista
VISTA DATA REDUCTION PROGRESS: COMMISSIONING

This page displays the reduction progress of VISTA data. Information is automatically updated hourly.

<table>
<thead>
<tr>
<th>Night</th>
<th>Status</th>
<th>N_{raw}</th>
<th>Version</th>
<th>Summary Plots</th>
<th>Photometry Plots</th>
<th>Summary Info</th>
<th>Observation Log</th>
<th>Paranal ambient conditions</th>
<th>Size raw [Gb]</th>
<th>Size red [Gb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009/10/15</td>
<td>REDUCED</td>
<td>363</td>
<td>GIF1, GIF2</td>
<td>GIF</td>
<td>summary</td>
<td>obs_log</td>
<td>nightmon</td>
<td>23.86</td>
<td>43.78</td>
<td></td>
</tr>
<tr>
<td>2009/10/16</td>
<td>REDUCED</td>
<td>341</td>
<td>GIF1, GIF2</td>
<td>GIF</td>
<td>summary</td>
<td>obs_log</td>
<td>nightmon</td>
<td>25.53</td>
<td>137.65</td>
<td></td>
</tr>
<tr>
<td>2009/10/17</td>
<td>REDUCED</td>
<td>470</td>
<td>GIF1, GIF2</td>
<td>GIF</td>
<td>summary</td>
<td>obs_log</td>
<td>nightmon</td>
<td>33.61</td>
<td>183.47</td>
<td></td>
</tr>
<tr>
<td>2009/10/18</td>
<td>REDUCED</td>
<td>398</td>
<td>GIF1, GIF2</td>
<td>GIF</td>
<td>summary</td>
<td>obs_log</td>
<td>nightmon</td>
<td>29.51</td>
<td>154.95</td>
<td></td>
</tr>
<tr>
<td>2009/10/19</td>
<td>REDUCED</td>
<td>505</td>
<td>GIF1, GIF2</td>
<td>GIF</td>
<td>summary</td>
<td>obs_log</td>
<td>nightmon</td>
<td>35.24</td>
<td>184.86</td>
<td></td>
</tr>
<tr>
<td>2009/10/20</td>
<td>REDUCED</td>
<td>401</td>
<td>GIF1, GIF2</td>
<td>GIF</td>
<td>summary</td>
<td>obs_log</td>
<td>nightmon</td>
<td>29.76</td>
<td>192.84</td>
<td></td>
</tr>
<tr>
<td>2009/10/21</td>
<td>REDUCED</td>
<td>448</td>
<td>GIF1, GIF2</td>
<td>GIF</td>
<td>summary</td>
<td>obs_log</td>
<td>nightmon</td>
<td>32.11</td>
<td>179.93</td>
<td></td>
</tr>
<tr>
<td>2009/10/22</td>
<td>REDUCED</td>
<td>476</td>
<td>GIF1, GIF2</td>
<td>GIF</td>
<td>summary</td>
<td>obs_log</td>
<td>nightmon</td>
<td>36.66</td>
<td>204.01</td>
<td></td>
</tr>
<tr>
<td>2009/10/23</td>
<td>REDUCED</td>
<td>589</td>
<td>GIF1, GIF2</td>
<td>GIF</td>
<td>summary</td>
<td>obs_log</td>
<td>nightmon</td>
<td>42.97</td>
<td>266.31</td>
<td></td>
</tr>
<tr>
<td>2009/10/24</td>
<td>REDUCED</td>
<td>434</td>
<td>GIF1, GIF2</td>
<td>GIF</td>
<td>summary</td>
<td>obs_log</td>
<td>nightmon</td>
<td>30.17</td>
<td>131.61</td>
<td></td>
</tr>
<tr>
<td>2009/10/25</td>
<td>REDUCED</td>
<td>454</td>
<td>GIF1, GIF2</td>
<td>GIF</td>
<td>summary</td>
<td>obs_log</td>
<td>nightmon</td>
<td>34.09</td>
<td>191.42</td>
<td></td>
</tr>
<tr>
<td>2009/10/26</td>
<td>REDUCED</td>
<td>454</td>
<td>GIF1, GIF2</td>
<td>GIF</td>
<td>summary</td>
<td>obs_log</td>
<td>nightmon</td>
<td>33.89</td>
<td>192.52</td>
<td></td>
</tr>
<tr>
<td>2009/10/27</td>
<td>REDUCED</td>
<td>492</td>
<td>GIF1, GIF2</td>
<td>GIF</td>
<td>summary</td>
<td>obs_log</td>
<td>nightmon</td>
<td>35.20</td>
<td>198.65</td>
<td></td>
</tr>
<tr>
<td>2009/10/28</td>
<td>UNPROCESSED</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td>obs_log</td>
<td>nightmon</td>
<td>0.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009/10/29</td>
<td>REDUCED</td>
<td>435</td>
<td>GIF1, GIF2</td>
<td>GIF</td>
<td>summary</td>
<td>obs_log</td>
<td>nightmon</td>
<td>33.04</td>
<td>191.13</td>
<td></td>
</tr>
<tr>
<td>2009/10/30</td>
<td>UNPROCESSED</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td>obs_log</td>
<td>nightmon</td>
<td>2.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009/10/31</td>
<td>UNPROCESSED</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>obs_log</td>
<td>nightmon</td>
<td>4.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009/11/01</td>
<td>UNPROCESSED</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td>obs_log</td>
<td>nightmon</td>
<td>0.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009/11/02</td>
<td>REDUCED</td>
<td>340</td>
<td>GIF1, GIF2</td>
<td>GIF</td>
<td>summary</td>
<td>obs_log</td>
<td>nightmon</td>
<td>25.31</td>
<td>102.82</td>
<td></td>
</tr>
<tr>
<td>2009/11/03</td>
<td>REDUCED</td>
<td>599</td>
<td>GIF1, GIF2</td>
<td>GIF</td>
<td>summary</td>
<td>obs_log</td>
<td>nightmon</td>
<td>47.72</td>
<td>249.12</td>
<td></td>
</tr>
<tr>
<td>2009/11/04</td>
<td>REDUCED</td>
<td>656</td>
<td>GIF1, GIF2</td>
<td>GIF</td>
<td>summary</td>
<td>obs_log</td>
<td>nightmon</td>
<td>53.90</td>
<td>205.86</td>
<td></td>
</tr>
</tbody>
</table>

Table description:

- N_{raw}: total number of raw images for the given night (this includes darks, flats, focus runs etc.)
Monitoring sky surface brightness

![Sky Brightness vs. Time Graph](image)

- **Sky Brightness [mag/arcsec^2]**
- **Time after sunset [hour]**
- **Time before sunrise [hour]**

Legend:
- KS
- L
- Y
- N
- NB118
VISTA data flow - II

- detector level monthly photometric zpt updates
 - illumination correction tables
- mosaic OB-level tile image and create confidence map
- tile image cataloguing (Tangent Plane projection)
 - nebulosity filter 6 component pawprints
 - mosaic and correct for sky levels and distortion
 - generate tile catalogue
 - grout tiles to fix PSF and detector zpt variations
- check derived QC info & sample of images (cf. OB grade)
- ingest to post-processing database enables checks:
 - FITS header contents, file size, provenance and calibration files, exploration of long-term trends, survey progress, data access
 - [Link](http://casu.ast.cam.ac.uk/vistasp/imgquery/search)
Survey progress overview

QC plots summarise:

- Astrometry
- Seeing
- Stellar ellipticity
- Sky brightness
- Magnitude zero-point trends
After the mirror coating intervention to the zero points are:

Same plot showing only the trend for more clarity:

Photometric ZP variation

Silvered
Aluminised

SV
P85
P86
Data Products - recap

- products consist of:
 - calibrated single exposure images
 - shifted "average" stack frames (pawprints) + conf maps
 - calibrated stacked pawprint catalogues
 - filled area tile images + confidence maps
 - calibrated tile object catalogues
 - sky background images, flats, darks, bad pixel mask
- science products are MEF files (images Rice-compressed)
- all QC parameters are stored in MEF headers
The Naming of Parts

- filenaming conventions
 - v20091102_00123.fit (raw & processed)
 - v20091102_00123_st.fit _st_cat.fits _st_conf.fit
 - v20091102_00123_st_tl.fit
 - dark_20091102_5_1.fit
 - J_flat_20091016.fit
 - sky_20091102_00123_J.fit

- ESO arcfiile and origfile names in header

- as is the version no. - currently v1.1** and OB grade
Image processing Steps

• Reset correction (debias – inline)
• Dark correction
• Linearity correction
• Flat field correction
• Sky background correction *****
• Destripe – controller level pickup
• Crosstalk, persistence and fringing corrections are not necessary
VIRCAM Stripes
Time Variable Sky
Available Sky Background Subtraction Algorithms

- Tilesky – double pass combination of all observations in tile(s)
- Pawsky – single pass combination of all observations in a pawprint with object masking iterated ‘dynamically’
- Pawsky with object mask – as above, but the mask is defined beforehand using e.g. deep stacked tiles
- Offset sky – use a sky taken nearby (spatially & temporally)
- Pawsky and “half” tilesky – minus ****
Before And After Background Correction
Flat Field Holes
-> Sky frame blobs (not stars)
The VIRCAM detectors are non-linear (2-10%) at 10k ADU.

The VIRCAM detectors do not use full 16 bit range, with saturation levels ranging from 24k to 37k.
Astrometric Calibration 2MASS - VISTA

WCS - ZPN projection

\[r' = r + k_3 r^3 + k_5 r^5 \ldots \]

Linear solution per detector

\[\xi' = ax' + by' + c \]
\[\eta' = dx' + ey' + f \]

\[\text{rms} < 100 \text{ mas} \]

Tabulated systematics from stacked residuals

\[\text{sys} < 25 \text{ mas} \]

NB. tiles are TAN projection
Astrometric Calibration 2MASS - VISTA

WCS - ZPN projection

\[r' = r + k_3 r^3 + k_5 r^5 \ldots \]

\[\xi' = a x' + b y' + c \]

\[\eta' = d x' + e y' + f \]

\[\text{rms} < 100 \text{ mas} \]

\[\text{sys} < 25 \text{ mas} \]

NB. tiles are TAN projection

Linear solution per detector

Tabulated systematics from stacked residuals
Astrometric Calibration - residual distortion map

VIRCAM z-band

X-position (cm) Y-position (cm)

-100 mas
Astrometric Calibration - residual distortion map

VIRCAM Ks-band

Y-position (cm)

X-position (cm)

\(\sim 100\) mas
Astrometric Calibration – residual distortion map
Astrometric Calibration - residual distortion map

![Graph showing residual distortion map](image)
Photometric calibration (2MASS incl. touchstone fields)

- colour equations to convert 2MASS to instrumental system
- 2MASS s:n> 10 in J,H,Ks and
 - $0 < (J-Ks) < 2$ & $0 < (J-Ks)_o < 1$ (extinction corr)
 - $0 < (J-Ks)$ & $(J-Ks)_o < 1$ & $(J-Ks) < 0$ (update extcorr)
 - no restriction
- NIR ~100-1000 "standards" per pointing
- required to be stellar and unsaturated
- Zpt + error per pointing; can compare with FS fields
- monitor long term Zpt behaviour
 - average monthly detector Zpt offsets
 - illumination corrections
Illumination correction J-band
Relative QE for VISTA detectors
Variation of x,y pixel scales
Variation of x,y pixel scales
VISTA photometric distortion

Inherent illumination correction

Tile exposure map
Issues with tiles

- imperfect sky subtraction pawprint matching
 - low level discontinuous artefacts
- variable PSF across single pawprints
 - each detector has different PSF
- variable seeing conditions
 - each pawprint has different PSFs
- variable saturation levels
 - each detector has different levels
- variable extinction during tile observation
 - variation of Zpt over tile
- astrometric distortion = need for
 - photometric distortion correction (sky -v- objects)
- interpolation options (NN, drizzle, cubics)
 - varying correlated noise patterns
- “interesting” MJD pattern
MJD variation across tiles
Innovative software solutions

- **nebuliser**
 - removes complex background variations
 - enhanced object detection & parameterisation
- **mosaicer**
 - CASU tiling software developed for VISTA
- **grouter**
 - applied to tile catalogues to remove the effect of PSF variations and photometric throughput (+ MJD column)
- **psf’ers**
 - automatically generates detector-level PSFs
 - and performs PSF photometry
Nebuliser -> M17 K-band WFCAM
Nebuliser -> M17 K-band WFCAM
Nebuliser -> M31 field 23 MegaCam
Nebuliser → M31 field 23 MegaCam