DEEP RADIO OBSERVATIONS: THE NATURE OF THE SUB-MJY RADIO POPULATION

Ibar et al. (2009) arXiv:0903.3600

Collaborators:

R.J. Ivison, A.D. Biggs, D.V. Lal, P.N. Best & D.A. Green

Introduction

Why radio?

- (1) Interferometry provides accurate positions and sub-arcsecond resolution.
- (2) Extinction is not an issue at long wavelengths (e.g. SMGs, Type II AGN).
- (3) It provides clear evidence of recent star formation in normal galaxies.

THE VLA TELESCOPE

In early studies, radio observations were restricted to powerful (>1mJy) radio sources, typically associated with optically bright quasars and rare luminous galaxies.

(Condon 1984; Willott et al. 2002)

In the mid 1980s the Westerbork Synthesis Radio Telescope (WSRT) and the Very Large Array (VLA) began to shed light on the mJy and sub-mJy radio regime.

(Windhorst et al. 1985; Mitchell & Condon 1985)

Introduction

This population is mainly composed by radio-quiet AGN and starforming galaxies, although their relative fractions are unknown.

Introduction

How can we disentangle the nature of the sub-mJy radio population?

•	Deviations from	the FIR/radio corre	lation	(e.g. Donley et al. 2005; Ibar et al. 2008)
---	------------------------	---------------------	--------	---

•	The radio spectral index	(e.g. Clemens et al. 2008)
---	--------------------------	----------------------------

- Morphology from sub-arcsecond observations (e.g. Muxlow et al. 2005)
- Cross-match with X-ray surveys (e.g. Simpson et al. 2006; Barger et al. 2007)
- Optical/NIR identification of the host galaxy:
 - Morphology
 - Spectroscopy
 - Colour-colour diagrams

(e.g. Padovani et al. 2007)

(e.g. Barger et al. 2007)

(e.g. Ciliegi et al. 2005)

Radio observations in the Lockman Hole

VLA-1.4GHz

```
3 pointings (A+B configuration)

r.m.s. pointings \sim 7 - 11 \muJy/beam

Area mosaic = 0.56 deg<sup>2</sup>

FWHM = 4.3 x 4.2 arcsec<sup>2</sup>

r.m.s. mosaic = 6.0 \muJy/beam

Dyn. Range \sim 2,300:1

1,425 sources ( > 5-\sigma )
```

GMRT-610MHz

```
3 pointings (2 IFs 602 & 618 MHz) r.m.s. pointings \sim 24 -34 \muJy/beam Area mosaic = 0.98 deg<sup>2</sup> FWHM = 7.1 x 6.5 arcsec<sup>2</sup> r.m.s. mosaic = 14.7 \muJy/beam Dyn. Range \sim 2,200:1 1,587 sources ( > 5-\sigma )
```

We find a wide non Gaussian distribution of spectral indexes (Δ α ~ 0.4 at all flux levels) and error dominated at $S_{1.4GHz}$ < 100 μ Jy flux densities.

-Lobe-dominated AGN and Star-forming galaxies
[α ~ - 0.7 spectrum]
Optically thin synchrotron emission

Deviations:

Compact synchrotron emission + Thermal bremsstralhung

(Blundell & Kuncic 2007)

-GHz-peaked sources (GPS)

[flat spectrum]

From scales < 1kpc, "a young FR source"

(Snellen et al. 2000)

-Ultra steep spectrum sources (USS)

[steep spectrum]

Old optically thin synch. emission, or at high redshift

(**Jarvis et al. 2001**)

There is no compelling evidence for an evolution in radio spectral index down to $\sim 100 \, \mu Jy$ at 1.4GHz.

We conclude the principal mechanism responsible of the radio emission in the sub-mJy radio population is given by optically thin synchrotron radiation: star-forming galaxies or lobe-dominated radio-quiet AGN.

LOCKMAN HOLE: AzTEC, SCUBA, MAMBO and Bolocam detections.

Slight evidence for steeper radio spectral indexes in SMGs.

α might be used as an indicator for AGN activity as suggested by those SMGs identified by having AGN activity from IRS spectra.

The Lockman Hole has the lowest Galactic line-of-sight column density $N_{\rm H} = 5.7 \times 10^{19} \, \rm cm^{-2}$

Red: 0.5-2.0 keV; Green: 2.0-4.5 keV; Blue: 4.5-10 keV

Brunner et al. (2008) published the deepest XMM-Newton observation for a total of 1.16 Ms (18 pointings). The maximum final effective exposure was 637 ks in the mosaic centre.

Area mosaic = 0.196 deg^2 Sources with a Likelihood > 10: 340 in the Soft X-ray band (0.5-2.0 keV) 266 in the Hard X-ray band (2.0-10.0 keV) We find a decreasing trend for the number of radio sources detected in the hard X-ray catalogue.

This may suggest a dominant starforming galaxy population in the sub-mJy radio regime.

There is, however, an spectroscopic/photometric classification for the X-ray sources (Lehmann et al. 2001; Szokoly et al. 2009, in preparation).

X-ray Observations

THE NATURE OF THE SUB-MJY RADIO POPULATION

At $S_{1.4 \rm GHz}$ < 300 μ Jy, there are 72 sources detected in the hard X-ray band, from which:

Class	Number
Type 1 AGN	16
Type 2 AGN	7
Galaxy	11
Clus/Grp	3
Unknown	35

Not all hard X-ray detections are AGN. Indeed, at fainter X-ray fluxes there is a large fraction of normal galaxies!.

Based on these fractions, we estimate a fraction between 15 and 35 per cent of radio-quiet AGN contaminating the sub-mJy radio regime.

For star-forming galaxies

(Condon 1992; Ranalli et al 2003)

Conclusion

We conclude the principal mechanism responsible of the radio emission in the sub-mJy radio population is given by optically thin synchrotron radiation: star-forming galaxies or lobe-dominated radio-quiet AGN.

Based on a spectroscopic/photometric classification of radio sources detected in the hard X-ray band, we estimate a fraction between 15 and 35 per cent of radio-quiet AGN in the 30 $\mu Jy < S_{1.4GHz} < 300~\mu Jy$ radio regime.