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A Closer Look at the Extinction Paradox

Matthew J. Berg, Christopher M. Sorensen,
and Amit Chakrabarti

Kansas State University, Department of Physics,
Manhattan, Kansas 66502-2601 USA
tel: +1 (785) 532-1626 , fax: +1 (785) 532-6806, e-mail: mberg@phys.ksu.edu

Abstract

The extinction paradox is usually described as the large-particle size limit of the
extinction efficiency factor as it approaches a value of twice the particle’s
geometric projection in the forward direction. This effect is paradoxical because
geometrical optics, valid for such large particles, predicts that the efficiency factor
equal the particle’s projection in this limit. The paradox has received much
attention since its discovery and is now generally understood as being due to a
combination of geometrical optics and particle edge diffraction. We report new
work that identifies problems with the traditional explanations of the paradox, and
we present a different way of describing a particle’s extinction behavior.

1 Introduction

One of the remarkable predictions of Mie theory is that the extinction cross section C*' of a spherical
particle approaches an asymptotic value of twice the area of its geometric shadow G as the size
parameter of the sphere becomes large. This so-called extinction paradox is an unexpected result in the
sense that geometrical optics should apply in the large size parameter limit, in which case one would
expect that the sphere extincts only as much power as is incident across G. A very intuitive explanation
of the paradox was quickly developed, most notably by van de Hulst, that attributes one factor of G in the
cross section to scattering and absorption by the sphere’s illuminated profile, and the other factor to
diffraction of the incident light from the sphere’s edge where the shadow begins [1]. Since its initial
description, the paradox has been shown to be a general behavior of extinction by particles of any shape
and is now widely regarded as a well-understood phenomenon [2].

In this presentation, we review the details of the popular edge diffraction explanation of the paradox and
describe the subtle problems associated with it. We present a different way of describing the extinction
process, which ties C directly to the fields inside of a particle, and discuss our recent computational
and analytical results. We show that these new results call for a more critical look at the extinction
paradox and its traditional explanations.

2 The paradox

ext

A particle’s extinction efficiency Q" is defined as the ratio of the extinction cross section to the particle’s
geometric projection G in the forward direction. The efficiency curves for spheres of vastly different size
R and complex-valued refractive index m show remarkably similar structure when plotted as a function of
the so-called phase shift parameter p, given by

p =2kR(m,, —1) (1)
where kis the vacuum wave number andm,, is the real part of the refractive index. Typical efficiency
curves for spherical particles generated by Mie theory are shown in Fig. (1). One can see that the curves
oscillate together with p and asymptotically approach the (paradoxical) value of Q" — 2 for large p.
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The large scale oscillations in the curves have been attributed to the interference of the diffracted and
forward scattered light, and the finer structures in the curves are attributed to the sphere’s internal
resonances [1]. Similar qualitative behavior has recently been found in inhomogeneous and nonspherical

particles, e.g., see [3].

L Al s Figure 1: Extinction efficiency curves
Q" for spheres plotted as a function of
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3 Edge diffraction?

The edge diffraction explanation of the paradox is well established in the literature. Investigators like van
de Hulst, Bohren and Huffman, and Born and Wolf, to name a few, elegantly apply the concept to explain
nearly every major feature of the extinction behavior of large particles [1,2,4]. However, the edge
diffraction explanation is not the only one that has been proposed. Brillouin and others explain the
paradox by separating the total external wave into a part that accounts for scattering and another part,
called the shadow forming wave, which cancels out the incident wave within geometrical shadow in the
near-field zone [5-7]. Recent theoretical work by Lai et al. adopted this explanation and showed that the
edge diffraction concept is inconsistent with the behavior of C** for a sphere illuminated by a narrow
Gaussian beam [8]. In addition, Fu et al. did not see the paradox occur for a sphere embedded in an

absorbing medium [9].

Following our recent work with extinction and the optical theorem [10,11], we examined the various
explanations of the paradox and identified problems with each of them. For example, the primary
assumptions involved in the edge diffraction explanation are that the scattered light at all angles is
regarded as being removed from the incident wave (i.e., extinction) and that the observation of a particle’s
cross section is made in the far-field zone where no sharp shadow exists [1]. However, one would expect
that the cross section of a particle in vacuum should be independent of the distance at which it is
calculated or observed. This means that the extinction paradox must occur in the near-field zone
arbitrarily close to a particle’s surface where the concept of a far-field edge-diffraction pattern loses its
meaning. Using Mie theory, we have verified that that the paradox does indeed occur in the near-field
zone by calculating C* directly from the near-field energy flow around a spherical particle. In addition,
we have derived the typical expression relating C® to the expansion coefficients of an arbitrary
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particle’s scattered wave represented in terms of the vector spherical wave functions, e.g. see [12]. We
carry out this calculation however, without invoking the far-field limit or using the optical theorem, which
demonstrates that the cross section is independent of distance for any particle.

Another problem with the edge diffraction explanation is that it tacitly assumes that the particle is much
larger than the wavelength. This is because the edge diffraction concept requires that the wave outside
of the particle can be meaningfully separated into rays incident on GG and rays that pass by the particle’s
edge undeflected [1]. However, inspection of the efficiency curves in Fig. (1) reveals that the paradox is
not just a large kR effect, but rather is a large p effect. The top curve in Fig. (1) asymptotically
approaches two with increasing p even though kR = 10. For a sphere of this size, geometrical optics
does not apply and hence the total wave near the particle cannot be resolved into rays intercepted by G
and rays passing by undeflected.

The shadow forming wave explanation of the paradox mentioned above has been developed only for
large perfectly conducting particles. Jackson treats the case of a sphere and explicitly shows how the
shadow forming wave can account for the extra factor of G present in the cross section [7]. A key
element in such calculations is that the external wave is zero immediately behind the particle in its
shadow. In the case of dielectric particles, it is uncertain how the shadow forming wave concept can be
applied since the wave in the shadow region behind such particles is not necessarily zero. Consequently,
the shadow forming wave concept does not appear to provide an acceptable general explanation of the
paradox.

3 A different view of the paradox

In an attempt to better understand the physical cause of the paradox, we have applied the optical
theorem differentially to a spherical particle using the volume integral equation (VIE) expression for the
far-field scattering amplitude [12]. The sphere’s internal field is integrated with the VIE over the partial
volume OV, which consist of the region of the sphere’s interior extending fromz =—R to z, see Fig.
(2a). From the optical theorem, the contribution to the total extinction from this region is

8C* (z) = Im{jE (f')exp(—ikz')dV} )

| EmC | o
where E™ is the incident electric field and E;m is the component of the internal electric field directed
along the polarization of the incident field.

Figure (2b) plots Eq. (2) for a sphere with a size parameter of kR =15and m =1.5+0i and a total
extinction cross section of C* =1.98G. The curve is normalized by G. One can see that the curve
rises from zero to around two once the portion of the sphere’s volume corresponding to its illuminated
side has been integrated. The flattening-out of the curve as more of its interior is included indicates that
the differential contributions to Eq. (2) from the sphere’s interior begin to partially cancel each other out
resulting in a total cross section that is proportional to the sphere’s projected area. One can understand
the cause of this cancellation behavior by realizing that the internal field varies greatly in magnitude and
phase throughout the particle’s interior due to its large (real-valued) refractive index and corresponding
large p. Had this partial cancellation been absent, as it would be for a much smaller sphere, the curve
would continue to rise ending in a cross section proportional to the square of the sphere’s volume. The
key point here is to notice that this description of the sphere’s extinction cross section furnishes the
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expected paradoxical result that C* — 2G without any need to consider edge diffraction or identify a
shadow forming wave.

Sphere: m=1.5+0i, kR=15

L

2.5¢

illuminated side shadow side
2.0

ac™ 1.5¢
G

Y
1

b

1.0}

0.5
v

R ook
—1.0 -0.5 0.0 0.5 1.0

z/R
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Figure 2: (a) Sketch showing a spherical particle and the partial volume 0V. (b) Plot of Eq. (2)

normalized by the sphere’s geometric projection G . The sphere size parameteris kR =15,
m =1.5+0i, and has a cross section of C** =1.98G.
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Abstract.

In this work the Discrete Sources Method (DSM) has been applied to analyze the
scattering behavior of a cylindrical nanohole in a noble metal film deposited on a
glass prism. In contrast to other publications an evanescent wave’s field has been
taken as an external excitation. The effect of an extreme light transmission in
evanescent wave’s region has been detected. The dependence of the transmitted
intensity on the incident angle, film properties and hole’s size and filling has been
investigated. Numerical results will be presented on the conference.

1. Introduction

Since the effect of enhanced optical transmission through a subwavelength holes array in a metal
screen has been detected by Ebbesen et al. [1], it attracted considerable interest by numerous
researchers. The ability to localize light in spots much smaller than the volume predicted by diffraction
theory offers multiple practical applications in nanooptics and biophotonics. The effect of enhanced light
transmission appears at a certain wavelength of the incident light, which depends on the screen material.
In the paper of Wannemacher [2] this effect has been explained by Plasmon excitation. It is now generally
agreed that surface plasmon resonances play a key role in enhancement of light transmission through
sub-wavelength apertures in noble metal screens. Recently several scientific teams worldwide have
examined the transmission properties of sub-wavelength apertures in connection with the development of
optical antennas and bionsensors. However, in most of these works conventional incidence is used as an
external excitation. At the same time, there are multiple practical applications using an evanescent wave
as external excitation. Employing evanescent waves may allow avoiding of the problem of filtering the
scattered light from the refracted one.
In our work we concentrated on scattering properties of a single sub-wavelength hole in a noble-metal
film filled by a dielectric medium in the range of evanescent waves. DSM [3] has been recently applied to
model this problem. The effect of extreme light transmission through the nanohole in a noble metal film on
the prism in the range of evanescent waves has been detected [4]. In the oral presentation the influence
of the incident angle, hole’s size and filling, as well as the material and thickness of the metal film will be
demonstrated.

2. Mathematical model

Let the whole space be divided into three areas: air D, film Df and a glass prism D,. Let the
plane X, separate a film and a glass prism and the plane Zf the air and the film. An axially symmetric
hole occupying a certain domain D; with a smooth boundary 0D is situated inside the film of thickness
d , bounded by the planes 2, and Zf . We assume that the symmetry axis of the hole coincides with the
normal direction to X, . Let us introduce a Cartesian coordinate system Oxyz by choosing its origin O at
the prism-surface X, in the moddle of the hole and let the Oz axis coincide with the symmetry axis of the

hole and is directed into D), . The plane z =0 corresponds to the X, plane (Figure 1). We assume that
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the exciting field {EO, HO} is a plane wave propagating from the prism domain D, at the angle 91 with

respect to the z-axis. First, the plane wave {EO, HO} scattering problem on the layered media is solved.

Air > AZ

Figure 1. Model geometry.

The result yields external excitation fields {E0 , Hg},é’ =0, f, 1 in domains Do,f,1' which satisfy
the transmission conditions at the plane interfaces Zl’f. While in Dl’f the total field consists of incident

and reflected waves, in D, the total field includes the transmitted wave which transforms to the
evanescent one behind the critical angle.
Then the mathematical statement of the scattering problem for the scattering field outside Dl- and total

field inside D; can be formulated as follows:

Vx H, = jke E,; Vx E, =—jkuH, inD,, ¢=0,1/71,1i,
n,x(E;(p)~E (p))=n,xE}(p),

n,x(H,(p)—H(p))=n,xH}(p),

e. x(E(p)~E,(p))=0, . e. x(Ey(p)—E (p)) =0, .
e x(H,(n-R(p)=0, | e.x(Hy(p)-H,(p)=0, |

and radiation/attenuation conditions at infinity for the scattered field in D, andin D .

pedD; (1)

Here, €. is the unit normal vector to the planes Zl’f, n , is the outward unit normal vector to oD,
k=w/c. If Img,,u, <0 (the time dependence for the fields is chosen as exp{ja) t}) and the
particle surface is smooth enough: 0D C C(z’a), then the above boundary-value scattering problem is

uniquely solvable.
After the plane wave {EO,HO} scattering problem on the interface is solved, the approximate

solution of the boundary value problem (1) for the scattered field {E’-, 2} in Dg, ¢ =0, f,1 and the

total field in D, is constructed. Let us remind that the boundary conditions of problem (1) are

inhomogeneous at the hole’s surface only.
To construct an approximate solution we will employ DSM [3]. In the frame of DSM the approximate
solution is constructed by representing the electromagnetic fields as a finite linear combination of the
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electric and magnetic fields of multipoles distributed over the axis of symmetry inside the hole. Besides,
the fields analytically satisfy the transmission conditions enforced at the plane interfaces Zl’f, which
provides an opportunity to account for whole interactions between hole and interfaces occuring due to
multiple field reflections. Then the approximate solution satisfies Maxwell equations in the domains
Dg,g =0,1, f,i, the infinity conditions and the transmission conditions at plane interfaces ZIJ-. Thus,

the scattering problem is reduced to the problem of approximation of the exciting field on the hole’s
surface 0D . Finally, the amplitudes of the discrete sources (DS) are to be determined from the boundary
conditions at D (see (1)).

For construction of the fields of dipoles and multipoles that analytically satisfy the transmission
conditions at the plane interfaces Zlaf, the Green’s tensor for a layered interface is used [5]. An
approximate solution of the scattering problem is constructed taking into account not only the rotational
symmetry of the scattering problem geometry (hole together with layered interface) but the polarization of
the exciting field [3] as well. The detailed description of the method including all related representations
can be found in [4]. The completeness of the system of dipoles and multipoles guarantees the
convergence of the approximate solution to the exact one [6].

The approximate solution, based on DSM satisfies all the conditions of the scattering problem (1)
except the transmission conditions at the hole’s surface 0D . These conditions are used to determine the
unknown amplitudes of discrete sources. Since the scattering problem geometry is axially symmetric with
respect to the z-axis and the DS are distributed over the axis of symmetry, fulfilling the transmission

conditions (1) at the surface 0D can be reduced to a sequential set of 1D transmission problems for the
Fourier harmonics of the fields. Thus, instead of matching the fields on the scattering surface 0D, we
match their Fourier harmonics separately by reducing the approximation problem on the surface 0D to a

set of 1D problems enforced at the particle surface generatrices 3. By solving these problems one can
determine the DS amplitudes. Besides, the DSM numerical scheme provides an opportunity to control the
actual convergence of the approximate solution to the exact one by posterior error estimation [3].

After the amplitudes of the DS have been determined, one can calculate the far field pattern

Ew(e,(p) of the scattered field, which is determined at the wupper semi-sphere

Q={0"<0<90°, 0° <p<360"} and is given by
8(M)/|EO(Z=0)|=MEOO(9,¢))+0(171), z>d, r=|M|->w.
r

The asymptotical estimation of the Weyl-Sommerfeld integrals [7] allows to present the components of the
far field patterns for P/S polarization as finite linear combinations of elementary functions. This
circumstance ensures a low costs computer analysis of the scattering characteristics in the far zone.

3. Numerical results and discussion.
The Differential Scattering Cross-Section (DSC) is calculated as:

2 2
175(6,,0.0) = |[EL56,0.0) +|ELS 0.0.0)] . @

where Ef:”g’(p (6? ,:9,(0) are the components of the far field pattern for a P and S polarized incident wave,

in a spherical coordinate system &, ¢ [4].
We will consider the Transmission Cross-Section (TCS), which represents the integrated intensity
transmitted into the upper semi-sphere Q={0"<8<90°, 0° <p<360°}:

P.S P.S
a"5(0)=[17°(8,6,p)w. (3)
Q
Next, we will present exemplary numerical results obtained using the DSM model. We consider the

scattering properties of the hole excited by a light source with wavelengths in the range of A=400-700nm.
The refractive indices of the film materials were taken from the paper by Lynch and Hunter [8].
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In Figure 2 the TCS (3) versus the incident angle is presented for a hole with diameter D=30nm in
an Ag film of thickness d=40nm for two different cases: when both the upper half-space and the hole are
filled either with water or air. In Figure 3 the TCS versus incident angle is presented for the hole of
D=35nm in Ag and Au films of thickness d=50nm for both polarizations under a fixed wavelength
A=532nm.

1E-4¢ 1E-4
1E-5 1E-5
E g
o3 1E-6 8 1E-6 Ag, P-pol
e = Ag, S-pol
Au, P-pol
1E7 i A 1E7L —o— Au, S-pol \
=4127  0=61.1 \
1E-8 K -l 1E-8 !
0O 10 20 30 40 5 60 70 8 90 0 15 30 45 60 75 90
Incident angle, deg. Incident angle, deg.

Figure 2. TCS (3) for the hole of diameter D=30nm | Figure 3. TCS for a hole D=35nm in gold (Au) and
in silver (Ag) film of thickness d=40nm in cases of | silver (Ag) films of d=50nm on glass prism,
air and water inside the hole A=532nm

Conclusion

In this work the DSM has been adjusted to model the scattering properties of a single nanohole in a
noble-metal film deposited on a glass prism. The influence of the film thickness and material as well as
the diameter and filling of the hole on this effect was investigated. Detailed numerical results and their
discussion will be presented on conference.
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Abstract

Light scattering by coated aggregates of spheres is studied using the discrete-dipole ap-
proximation. The coatings are formed by a concave-hull transformation, which proves to
be highly applicable in particle inhomogeneity studies. The scattering results for depolar-
ization yield an intriguing double-lobe feature near backscattering direction. Intensity and
polarization results are compared to light scattering by concave-hull-transformed Gaussian
random particles.

1 Introduction

Small particles in nature, e.g., atmospheric particles or interplanetary dust particles, have often inhomo-
geneous internal composition in addition to nonspherical shapes. In fact, nonsphericity can encourage for
inhomogeneity, because material is easily collected in the surface concavities of a particle.

The previously introduced concave-hull-transformation method [1] is here utilized to model the inhomo-
geneities by rolling a generating sphere over a cluster of spheres. The inner surface formed by the generating
sphere defines the resulting shape of the particle, and the volume added by the transformation is treated as
a coating which makes the particle inhomogeneous. Example shapes generated using clusters of 10 spheres
and 100 spheres are presented in Fig. 1.

The only parameter of the concave-hull transformation is the scale radius # which, for the clusters of
spheres, denotes the ratio of the generating-sphere radius to the radius of a sphere of equal volume than the
cluster. The example shapes in Fig. 1 were generated using a scale radius /& = 2.

2 Scattering by concave-hull-transformed clusters of spheres

The random ballistic clusters were studied using 10 and 100 spheres, and three sample clusters were gener-
ated in both cases to obtain a tentative average over the results. Two complex refractive indices were used to
model silicate and slightly absorbing ice: m; = 1.55 + 0.0017 and m; = 1.31 + 0.001i.

Light-scattering characteristics by the inhomogeneous, coated clusters of spheres were computed using
the discrete-dipole approximation code DDSCAT [2]. Random orientation was mimicked by computing the
scattering properties in 1296 orientations. The equal-volume-sphere size parameters for the clusters of 10
spheres are, for uncoated and coated particles, x = 5.0 £ 0.2 and x = 6.1 + 0.2, respectively. For clusters of
100 spheres, the size parameters are x = 4.0 £ 0.1 and x = 6.1 + 0.3.

The results of the computations are shown in Fig. 2 for all the combinations of cluster and coating
compositions, when refractive indices of ice and silicate are used. In addition to intensity and the degree of
linear polarization for unpolarized incident light, depolarization results 1 —S 5, /S 11 are also considered. For
spheres, S2,/S 11 is equal to unity and, therefore, depolarization can indicate particle-shape deviations from
spherical, although the effect is not systematic.
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Figure 1: Ballistic clusters of spheres (top) with 10 (left) and 100 (right) equal-size spheres and their concave
hulls (bottom) generated with a sphere of scale radius 4 = 2. The concave-hull-transformed particles are
shown in a form discretized for DDA computations.

For the clusters of 10 spheres, the cluster composition clearly dominates the scattering characteristics
whereas, for the clusters of 100 spheres, the results are grouped according to the coating composition. As
a material, silicate scatters effectively more than ice. Light scattered by the coated clusters of 10 spheres
is more positively polarized than observed for clusters without the coating. On the contrary, the uncoated
clusters of 100 spheres have a polarization profile quite similar to the entirely positive Rayleigh polarization,
probably because the spheres in the clusters are small enough compared to the wavelength of incident light.
With the coatings, the polarization decreases, which is most prominently seen in the particles with silicate
coatings. Near the backscattering direction, the intensity increases nonlinearly and polarization has negative
values as explained in [3] and [4].

A comparison between the light scattering results obtained here for the coated clusters and the results
for the concave-hull-transformed Gaussian random particles in [1] yields that, although the intensity of
the scattered light varies quite similarly as a function of the scattering angle, there are major differences
in polarization behaviour. The Gaussian-random-particle geometry is generated by deforming a sphere [5],
which is probably the reason for the resonant oscillations observed in the polarization curves of the Gaussian
particles. These resonances are not as pronounced for the clusters of spheres, as seen in Fig. 2.

One yet unexplained feature is observed in the depolarization results: for large scattering-angle values,

10
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Figure 2: DDA results for inhomogeneous particles. The solid line denotes the silicate-composed cluster of
spheres, while the dotted line refers to a silicate cluster with an icy coating, and the dashed line represents
an icy cluster with a silicate coating. Dash-dot line is used for silicate particles and dash-triple-dot for icy
particles.

1"



Eleventh Conference on Electromagnetic & Light Scattering

depolarization performs systematically a double-lobe feature. The minimum between the two peaks occurs
at approximately a constant angle, 6 ~ 160°, for every particle, despite the composition or the number
of spheres in the original cluster. Particle composition affects the height of the maxima and the depth of
the minimum, but the phenomenon is, nevertheless, similar in all cases studied. The double-lobe feature
has been observed previously in light-scattering computations, e.g., in [3] and [6], and also in laboratory
measurements [7]. Note that depolarization is not observed if the incident light is unpolarized (e.g., sunlight).

3 Discussion

The concave-hull transformation presented in [1] has been developed further and applied to clusters of
spheres. In all, the concave hull proved to be an efficient tool in modelling particle inhomogeneity: the coat-
ings added on the homogeneous particles appear realistic and offer a promising method in the studies of,
e.g., atmospheric mineral aerosols that easily collect inhomogeneities in their grooves, or interplanetary dust
particles which possess an aggregate-like structure and are often inhomogeneous due to the space environ-
ment exposure. For practical applications, the simulations could be repeated using realistic size distributions
for the particles.

In light-scattering computations, a common feature was observed for the particles despite the composi-
tion or shape: a double-lobe structure of depolarization near the backscattering direction. The mechanism
behind this intriguing feature has not yet been uncovered, but in all likelihood, it has a connection to the
mechanisms causing the backscattering phenomena for intensity and polarization, because the maxima and
minima were seen to mostly coincide. Definitely, the effects seen in depolarization call for an in-depth
mechanism study in the future.
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Abstract

We present a unified approach to the separation of variables (SVM), extended
boundary condition (EBCM) and point-matching (PMM) methods based on ex-
panding the electromagnetic fields in terms of some wave functions. Because of
essential difference in the light scattering problem formulation used by these meth-
ods, earlier they were developed independently. We demonstrate that the same 10
integrals of the radial and angular functions and their first derivatives are to be
computed within each of the methods to find the unknown scattered and internal
field expansion coefficients in the case of axisymmetric scatterers. These integrals
are shown to be similar for different (spherical, cylindrical, spheroidal) coordinates
(and corresponding functions) applied. So, the methods are unexpectedly tightly
related.

1 Introduction

The exact light scattering methods based on expanding the fields in terms of wave functions (EBCM,
SVM, and to less extend PMM) are widely applied due to their high efficiency for simple shape
and structure scatterers [1,2].

In this paper we first describe the methods under consideration and emphasize their essential
difference, and then outline the suggested approach to the methods and the main result of the work.

2 Methods under consideration

The SVM, EBCM and PMM solve the light scattering problem by using the expansions of the
harmonic fields E, H () in terms of some wave functions F, (7)

ZOKV F) H Zﬁu I/ (1)

In the SVM the classic light scattering problem formulation is used, i.e. for the electric field
AE(7) + K*E(7) = 0, (EO( 7) + E(7 )) x 7i(F) = E\(¥) x ii(F) for 7€ S, (2)

where EO, ES, E' denote the incident, scattered and internal fields respectively, 7 is the external
normal to the scatterer boundary S, the wavenumber k = 27”” with A and m being the wavelength
of radiation and the refractive index. Further, one substltutes the first N terms of the expansions
(1) in the boundary condition (2), multiplies both projections of this condition by the angular part
of the functions E,/ for v/ = 0,1,..., N and integrates the result over the scatterer surface [1,3]. So,
one gets 2(IN + 1) equations relative to 2(N + 1) unknown coefficients of the scattered («f) and
internal () field expansions

A B\.g_ (E
(£ 8)-(2)e
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where A, B, ..., F are matrices whose elements are integrals of the wave functions, %' = {a$, al,}V .

= {a0}V ) is a vector with known coefficients of the incident field expansion. Solution of the
system (3) gives the unknown coefficients which allow one to calculate any light scattering charac-
teristics.

In the FBCM an equivalent surface integral formulation of the problem is applied

—

VX/S A7) x B G(F, 7)ds’ —WVXVX/S () x (¥ x B()) G #)ds' =
= —E%7), 7eD or Ef), feR\D, (4

where G(7,7") is the Green function of the wave equation (2) for free space (the wavenumber is
ko = %F), D means the interior of the scatterer. The first N + 1 terms of the field expansions (1)
and the known Green function expansion in terms of the same wave functions are substituted in
the extended boundary conditions (4) [1-3]. Completeness of the basis functions used allows one to
equal the expansion coefficients for each of N + 1 functions F,, involved. Two equations provided
by (4) give two matrix equations

_Qlfi:'fo7 _:Z:S_'_Q2:L_:i:07 (5)
where the matrices 1, Q2 have elements being integrals of the wave functions, #* = {a5}_,, and
7 ={a, 1),

In the PMM one uses minimization of the residual A describing fulfilment of the boundary
conditions (2) at the scatterer surface S

A= /S |(B°G) + B x i) — BG) < ii(7) 2

The first N + 1 term of the field expansions are substituted in the residual (6). The derivatives
of the residual A(Z®, Z') with respect to the unknown coefficients o5, al,,v = 0,1,..., N are made
equal to 0, which gives 2(N + 1) linear algebraic equations relative to these coefficients [2,3]. As a
result one gets a system like (3) but with other elements being obtained here from relaxing (6).

ds’ — min. (6)

Thus, the way of solution of the problem essentially differs in three considered methods.

3 Approach to the methods and the main result

Instead of the fields and their usual expansions (1) in terms of vector wave functions we utilized
scalar potentials and their expansions in terms of scalar functions (see Appendix for some details).
In our approach the potentials V, U are combined for axisymmetric scatterers as follows:

. . . . 1 - - -
E™ =V x (Vi + Unty), B = =22V V x (Ve o+ Uedy), (7)
(3

where the superscripts (tm, te) denote two kinds of the incident plane wave polarization [3].
The potentials are expanded in the functions (19) or (20) depending on the coordinates selected

ZZ L omi, ZZ Lot (8)

mOlmml mOlmml

Such expansions are completely equivalent to the field expansions in terms of the corresponding
vector functions

B S S (ag ity atNiz)), B = Y03 (BNt N), )

m=0l=m m=01=m
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where M™ =V x (VF), ..., N* = =LV x V x (Ui,).
We also extract an axisymmetric (independent of ¢) part of the fields, e.g.

E™ = E\™(r,0) + EX(r,0, ), ZZ( My + aly Mz, ) (10)

Extraction of E has some advantages discussed, e.g., in [3]. To treat EA, we introduce an original
scalar potential p that is expanded as follows:

o0

p=> alou. (11)
=1

Another important feature of our approach is the use of specially normalized angular functions
in the expansions (8), (11): P/ = P/"/N%,, and S,y = Spu /N P and definition of 10 integrals of
the radial and angular functions and their first derivatives a,;, by, ... (for each azimuthal number
m) like the following one:

for the spherical coordinates :  a, = / Gi1(kr(0)) P/™(cos 0) P (cos #) sin 6 do, (12)

for the prolate spheroidal ones :  a,; = / R kc €M) Spi(ke,n) Smn(c,n) dn. (13)

One needs to calculate all these integrals to obtain EN, but only 6 of them are necessary to derive
E 5. The latter case is used below for illustration.

The main result of our work is that these and only these matriz blocks (integrals) are required
to derive the systems matrices in all three methods. And this holds for any ( spherical, cylindrical,
spheroidal, etc.) coordinates for which the separation of variables (19),(20) is possible.

The integrals form the matrix blocks of the systems (3) arising in the SVM

A = A= e}y BV = B= b5y, o Y= F = ()2, (14)
For the EBCM, we have (the superscript T denotes the transposed matrices)

Q1=1i[C"B—A"D], Qy=—i[F'B—E"D]. (15)
For the PMM, it was obtained that (the asterisk means the complex conjugation)

Avmm — ATy A L (cTyrc, BPm = —[(AYY*B + (CT)* D), ... (16)

In Table 1 we give just a few values of the extinction (Ceyt) and scattering (Cyea) cross-sections
calculated by different methods. Excellent agreement of the results confirms the correctness of the
ansatz suggested. More numerical examples will be presented at the conference.

Thus, we find an elegant independent of the coordinates used formulation of three essentially
different methods: SVM,; EBCM, and PMM. Our SVM solution to the light scattering problem for
axisymmetric particles needs calculation of 10 integrals. We demonstrate that the same integrals
allow one to get the EBCM and PMM solutions. This shows an unexpectedly tight relation of the
methods and gives a ground for creation of a code being not more complex than that for any of
the methods, but combining their advantages.

The work was supported by the grants RFFI 07-02-00831, RNP 2.1.1.2852 and NSh 1318.2008.2.
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Appendix: Scalar potentials

The wave equation (1) has three general solutions, but only two of them satisfy the equation V.-E =0 and
can be used for the field expansions

. S . 1o o
My =V x(ppa), Ny=1VxVx(pa), (17)

where d is a vector, ¢, a scalar potential being solution to the scalar Helmholtz equation
A, (7) + k2, (7) = 0. (18)

In several coordinate systems this equation can be solved by separation of variables. For example, in spherical
coordinates (7,0, ), one has

©ml (Ta 07 SD) = Zl(kT) F)lm(COS 9) cosmey, (19)

where the radial functions z;(kr) are the spherical Bessel (j;(kr)) or first kind Hankel (hl(l)(k:r)) functions,
P/™(cos 0) the associated Legendre functions. In spheroidal coordinates (&, n, ¢)

Pml (57 7, 90) = Ry (Ca 5) Sl (C, 7]) cosmey, (20)

where R,,i(c, &) are the first or third kind prolate radial spheroidal functions, S,,;(c,n) the prolate angular
spheroidal functions, ¢ is a parameter defining the system.

When one solves the light scattering problem for a sphere in spherical coordinates or for a cylinder in
cylindrical ones, in fact a pair of scalar potentials Vg, V,, or U,, Uy, are introduced. For instance, for one kind
of the incident wave polarization one has

— — 1 = =l — = - 1 = = —
sph: E =V x (Vu7) — %V x Vx (Vor), cyl: E=V X (Uni,) — %V X V X (Ueiy), (21)

where & = m?2, 7, is the unit vector along the infinite cylinder axis (z-axis).

Table 1: Cross-sections computed for a spheroid (a/b = 1.5) and a Chebyshev particle (n = 5,
e = 0.07) by three methods with N = 20 terms kept (m = 1.5, 2, = 1, & = 45°, spherical basis)

Spheroid Chebyshev particle

Cext Csca C’ext Csca
SVM 0.4062428581 | 0.4062428585 | 0.334616303 | 0.334616301
EBCM | 0.4062428589 | 0.4062428585 | 0.334616303 | 0.334616305
PMM | 0.4062428581 | 0.4062428585 | 0.334616303 | 0.334616301
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Abstract

We investigate near-field thermal radiation between a thin (10-100 nm) film
emitter and a bulk SiC using Maxwell's equations and fluctuational
electrodynamics. Results obtained via a modified T-matrix approach show a
narrow spectral band enhancement of the radiative flux for nanometric emitters
due to a coupling of surface phonon-polaritons inside the film.

1 Introduction

Near-field effects of thermal radiation lead to an increase of radiant energy exchanges beyond Planck’s
blackbody distribution (due to tunneling) taking place in a narrow spectral band if surface polaritons are
thermally excited. While thermal emission from bulk materials in the near-field and from thin films for far-
field control has been studied during the past years, little attention has been paid to near-field radiative
heat transfer involving a thin film emitter.

It was shown recently that the near-field energy density above a 10 nm thick emitting film of SiC is
more than an order of magnitude higher than for a bulk SiC around the resonant frequency of surface
phonon-polaritons (SPhP) [1]. Biehs et al. [2,3] studied near-field energy density of thin metallic emitters
and materials coated with metallic films, and explained the enhancements by the coupling of surface
plasmon-polaritons (SPP) inside the films. In general, SPhP are easier to excite thermally than SPP since
their resonance is in the infrared region; for example, resonance of SPhP for a SiC-vacuum interface is
around 10.55 um (1.786 x 10" rad/s).

In this work, we study near-field radiative heat transfer from thin SiC film emitters submerged in
vacuum, and show that the coupling of SPhP inside the emitting thin film is responsible for the
enhancement of the radiative flux.

2 Theory

2.1 Near-field radiative heat transfer in 1D layered medium

We consider radiative transfer between a SiC emitter of finite thickness ¢ (medium 1) and a bulk SiC
(medium 3) spaced by a vaccum gap d, as shown in Fig. 1. The near-field radiative heat flux between
media 1 and 3 is derived starting from Maxwell’'s equations and using fluctuational electrodynamics (FE),
where the source of thermal radiation is modeled as a stochastic current density vector in Ampére’s law
[4]. Derivation of a solution for the time-averaged Poynting vector (i.e., radiative heat flux) for non-
magnetic and isotropic media defined by a dielectric constant local in space [4] in the z-direction at
location zz+ in medium 3 leads to:
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N k ® a),
45(z,,0) =— (@1)
7Z'

" ka+a’9 H*ka+a'9
Re gnl(a))J-k dk J.d [nga( X ZZ Z a))gISya( X ZZ Z a))J (1)

E3
gl3ya (kx’Z;’Z”a))ggxa (kx’Z;’Z"a))

where k, is the magnitude of the wavevector in vacuum, @ the angular frequency, £, the imaginary part
of the dielectric function (& = &, + ig”’,) of the source medium 1, k, the wavevector parallel to the
surfaces, and © the mean energy of a Planck oscillator in thermal equilibrium. Terms glj‘;;g (j=xory)

are the scalar electric/magnetic Wejl components of the Green’s tensor relating the fields observed at zz+
due to a source located at z' [5]; the subscript & in Eq. (1) implies a summation over the three orthogonal
components x, y, and z. When deriving Eq. (1), local thermodynamic equilibrium (LTE) of the emitting
medium is assumed for the application of the fluctuation-dissipation theorem (linking the ensemble
average of the spatial correlation function of stochastic current density and temperature of the medium).
The fields in each layer are solved using a modified T-matrix approach to avoid numerical instabilities
appearing when dealing with thick layers and/or evanescent waves [6]. The dielectric function of SiC is

x 7. =300 K T.=0K approximated by a damped harmonic oscillator
! 3 2 2 2 2. .
Medium 0 | Medium1 | Medium2 | Medium 3 model & = &[1+(@WLo -@ro”)(@ro™ @ ™-iyw)] with
K, i &n=6.7, W0 = 1.825 x 10" radls, wro = 1.494 x
BEE o oEan 10" rad/s, and y=8.966 x 10" s [7].
zl z

Vacuum | Sic c Vacuum e Figure 1: Geometry for near-field radiative heat
transfer simulations between a SiC film (thickness

Z —» -0 t d — Z—> too .

Z Z, z, t) and a bulk SiC spaced by a vacuum gap d.

2.2 Surface phonon-polaritons coupling in thin films

Transverse optical phonons (TO) generate SPhP at a polar crystal-dielectric interface, with evanescent
fields in both media, due to out-of-phase oscillations of opposite charges. SPhP are excited via random
thermal motion of charges inside the medium; note that these SPhP exist only in TM-polarization for non-
magnetic materials. In thin films surrounded by dielectric materials, the evanescent field of SPhP
associated with each interface can interact with each other inside the film. In that case, the dispersion
relation of SPhP (i.e., @ as a function of k,) splits into anti-symmetric and symmetric modes. Here, the
terms anti-symmetric and symmetric refer to the distribution of the tangential electric field inside the film
with respect to the middle plane of the layer [8]. The dispersion relation of SPhP for a film of thickness ¢
(medium 1) surrounded by a dielectric material (medium 2) with the origin of the z-axis centered in the film
leads to two possible resonances [8] :

L ¢ k.,+e,k, tanh[%) O0Oand L :¢.,k.,+¢,,k, coth( ll; t) 0 (2)

where L and L refers to anti-symmetric and symmetric modes, respectively. Equations (2) are
transcendental and solutions of the complex wavevectors for each mode are found using a Newton
method for a system of two equations (i.e., real and imaginary parts). The dispersion relation of a SiC film,
as a function of its thickness ¢, is shown in Fig. 2 and compared with the dispersion relation obtained for a
single SiC-vacuum interface. For the single interface, resonance of SPhP occurs around 1.786 x 10™
rad/s where k, becomes very large. On the other hand, two distinct branches (i.e., one for each mode)
develop for thin films due to the coupling of SPhP, and this splitting becomes more pronounced as the
film thickness decreases. Therefore, the splitting of the dispersion relation into two distinct branches for
thin films increases the number of channels (i.e., k) available for radiative heat transfer, and can be
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T exploited to increase the radiative heat

14 [ . . i

1.85x10° ¢ Anti-symmetric modes flux between closely spaced bodies. For
large values of k,, dispersion relations of
both modes approach asymptotically the
dispersion curve of a single interface; for
large films, coupling of SPhP becomes
impossible, and the anti-symmetric and
symmetric branches merge into the curve
for a single interface.
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Figure 3: Monochromatic radiative heat flux between a SiC film of thickness ¢ (at 300 K) and a bulk SiC
(at 0 K) spaced by a vacuum gap of 10 nm. (a) Comparisons are shown for ¢ = 10, 20, 100 nm and a bulk
SiC emitter. (b) TE and TM evanescent contributions for # = 10 nm and a bulk SiC emitter.

Figure 3(a) shows the monochromatic radiative heat flux between media 1 and 3 for 77 = 300 K, d =
10 nm, and ¢ = 10, 20, 100 nm; results are compared with those obtained for a bulk SiC emitter. The
radiative flux around the resonant frequency (w,.s) of SPhP increases as the thickness of the film
decreases. On the other hand, the flux decreases for other frequencies because of the diminishing
emitter source volume. The enhancement around @, for the film is due to SPhP coupling since the
number of k, available for radiative heat transfer increases at ¢ decreases. This statement is confirmed by
results depicted in Fig. 3(b), which show that only the TM evanescent contribution to the radiative heat
flux is higher at @, for a 10 nm film emitter compared to a bulk emitter. This SPhP coupling
enhancement quickly decreases as the film thickness increases; for ¢ = 100 nm, the radiative heat flux at
s is identical to that for a bulk emitter. Note that the smaller peak of radiative heat flux (at 1.490 x 10™
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rad/s) for TE-polarization is due to the tunneling of regular evanescent waves which can lead to a
maximum radiative heat flux proportional to &1 times blackbody radiation. At this frequency, &, of SiC is
very large, and consequently the contribution from this secondary peak to the radiative heat flux, not due
to SPhP, decreases as the volume of the emitter decreases. For a bulk emitter, the total radiative heat
flux (i.e., integrated over all angular frequencies) is 6.130 x10° W/m® where 6.079 x10° W/m? is
concentrated within the spectral band between 1.500 x10™ to 1.900 x10™ rad/s. For an emitter of 10 nm
submerged in vacuum, the total radiative heat flux increases substantially to a value of 1.3369 x10° W/m?,
with 1.3367 x10° W/m? within the band 1.500 x10™ to 1.900 x10™ rad/s.

4 Concluding Remarks

We have shown that near-field radiative heat transfer is enhanced around resonance of SPhP for
nanometric film emitters due to SPhP coupling. As a consequence, the total radiative flux increases in a
narrow spectral range which could potentially be exploited for nanoscale thermophotovoltaic power
generation devices.

One may question the validity of applying FE to media as thin as 10 nm. Indeed, for nanometric films,
we expect some deviations from FE where LTE has to be assumed. Despite the fact that the absolute
values of radiative heat fluxes might contain a systematic error, the underlying physics of SPhP coupling
in thin film and the associated enhancement of radiant energy exchanges caused by an increase of £, is
still valid; the trends and comparisons between thin films and bulk emitters reported here are
consequently physically realistic.
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Abstract

Analytic expressions for Green’s function of stationary polarized radiative transfer
equation in case of cylindrically symmetric radiation field are found, assuming
that the medium is homogeneous, isotropic, infinite, with scalar extinction law
and monochromatic nonconservative scattering.

1 Introduction

In the framework of the classical theory of polarized radiative transfer, Green’s function for the
inhomogeneous radiative transfer equation (RTE) has been considered by several authors. Domke
investigated stationary monochromatic radiation fields with plane-parallel symmetry in homogeneous
isotropic medium with scalar extinction if the phase matrix can be represented as a finite sum of
generalized spherical functions [1, 2]. Freimanis extended these results to phase matrices obeying only
some regularity conditions, and to the case if the homogeneous RTE has adjoint functions [3, 4].
Poutanen et al. [5] explored Green’s function in case of Compton effect. Closed expressions were
obtained for Green’s function in case of spherically symmetric radiation field in homogeneous isotropic
infinite medium with nonconservative scattering [6]. In this study analytic expressions for Green’s function
of the stationary RTE in homogeneous isotropic infinite medium with scalar extinction, monochromatic
nonconservative scattering and cylindrically symmetric radiation field are found.

2 The physical conditions

In order to describe partially polarized radiation, in this section, Eq. (1), we use Stokes - Poincare (SP)
representation where the radiation is characterized by Stokes vector consisting of Stokes parameters (/,
0, U, V)T , the latter being defined as in [7]. But for convenience of derivations, everywhere further only
circular polarization (CP) representation is used, with Stokes vector I = (15, Iy, Lo, 1_2)T = (Q-U, I-V,
[V, OHU)" (see [1]).

It is assumed that the medium obeys the following conditions:

e The medium is homogeneous, isotropic and infinite, and the extinction matrix is scalar.

e The scattering (and extinction) process is monochromatic.

e The scattering matrix is physically valid accordingly to Konovalov [8] almost everywhere on the
interval z = cos 8 < [-1, 1], where 6 is the scattering angle, and block-diagonal in SP
representation (assuming the scattering plane as the plane of reference):

0

0 . )
0 0 a, (Z) c(z)

0 0o - c(z) a,(z)
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e In CP representation, all the functions

‘ WI*H‘ ‘ m+n‘

u, (z)=[CG)], (1-z) 2 (1+z) 2, mn=20-0,-2 ()

are entire functions.

e Single scattering albedo 4 satisfies the inequalities 0 < 1 < 1.
e The dispersion matrix As(z) defined as in [1, 3, 6] is nonsingular on the sides of the cut z < [-1,
1] for all azimuthal harmonics s =0, +1, +2,

1
lim detA (z)= lim det| E+2 2 (o) [ BAHAE ”)V' akd )du 0, npel-1 1] 3)

z—n+i0 z—n+i0 e

3 Main ideas and results

The cylindrically symmetric radiation field is assumed to be stationary. It depends on single radial spatial
coordinate r, or equivalently on the optical distance z= arfrom the axis of cylindrical symmetry, as well
as two angles (cos'1y, @) characterizing the direction of propagation S (see Fig. 1):

Figure 1: Coordinate system for the description of cylindrically symmetric radiation field.

22



Eleventh Conference on Electromagnetic & Light Scattering

The Green’s function G(z, i, ¢ ; 7, 1, ¢ ) obeys the transfer equation

0G(r, 037", 110') (1— 4 Jsin® ¢ 0G(c, e, 937", 1t',9")  pusin29 0G(z, w057, 1", 9)

“ or T ou 27 op
27 4o
=Gz, u ;7' 1,0’ +—Ize'”” dco”fp (. "G (e, 1" 0" 0" N
0 s=—©
+Es(r—7")o(u—u)o(p-9') 4)

In order to obtain its solution, we construct an auxiliary plane-parallel transfer problem which is a
superposition of cylindrical problems, namely, with primary sources distributed inside slab |z, | < 7. The
solution of the auxiliary problem in kind of expansion in generalized spherical functions [9],

I"(r.,v,B;7,) = ZZe’”ﬁP’ D! (z.,7,), %)

s=—a0l=]s|

is obtained analytically using plane-parallel Green'’s function [3]. The expressions are of kind

oo |2 e

|
Dl T J.e ! Z Z m(l) 70,77 s+2md77+ Z e’ Z Ji(Z)(Tz’Twnz )bs;rzm (6)
0 ;

2
sl [ its Re77;>0 f:\S\m:_[L

2 2

for 7, > 7, and similar but twice longer expression for z, < r,. Here functions f(...) are some lengthy
expressions, and b; are arbitrary constant coefficients.

The cylindrical Green’s function is expanded as series in generalized spherical functions; it is
shown that the expansion coefficients as functions of r obey systems of Abel integral equations, with
generalized spherical functions in their nuclei, and functions DS’(...) given by Eq. (6) and an analog
formula for 1z, < 7y on the right hand side. These systems of integral equations are transformed to a set
of mutually independent Abel integral equations, each with only one integral, one unknown function and
one Chebyshev polynomial of the first kind in the nucleus. Finally, Abel integral equations are solved
analytically using formula given in [10], and the result is as follows:

G(r. it 1, 9')
l &% I [%S} dx
-0 Z Ze IS(/)P ) (_ 1) I s,5+2m (x)_Dﬁ—Zm (y9 2— s (7)
7 S Tl el o1

where b,' must be replaced by (-1)* (2/+1) P,(1/ ) €% / (47) when substituting Eq. (6) into Eq. (7).

Acknowledgments

The author is grateful to Dr. I.Shmeld and Dr. J.Zhagars for continuing financial support of this work.

23



Eleventh Conference on Electromagnetic & Light Scattering

References

(1]

(2]

[3}

[4]

[5]

[6]

[7]

(8]

(9]

[10]

H. Domke, “Transfer of polarized light in an isotropic medium. Singular eigensolutions of the
transfer equation,” Journ. Quant. Spectrosc. & Rad. Transfer 15, 669-679 (1975).

H. Domke, “Transfer of polarized light in an isotropic medium. Biorthogonality and the solution of
transfer problems in semi infinite media,” Journ. Quant. Spectrosc. & Rad. Transfer 15, 681-694
(1975).

J. Freimanis, “On the completeness of system of eigenfunctions and adjoint functions of transfer
equation of polarized radiation,” Investigations of the Sun and Red Stars 32, 20-116 (1990) (in
Russian).

J. Freimanis, “Transfer of polarized light in homogeneous isotropic semi infinite medium if the
generalized eigenfunctions of transfer equation exist,” Investigations of the Sun and Red Stars 36,
18-84 (1993).

J. Poutanen, K. N. Nagendra, R. Svensson, “Green’s matrix for Compton reflection of polarized
radiation from cold matter,” Mon. Not. Roy. Astron. Soc. 283, 892-904 (1996).

J. Freimanis, “On Green’s function for spherically symmetric problems of transfer of polarized
radiation,” Journ. Quant. Spectrosc. & Rad. Transfer 96, 451-472 (2005).

J. W. Hovenier, C. V. M. van der Mee, “Fundamental relationships relevant to the transfer of
polarized light in a scattering atmosphere,” Astron. and Astrophys. 128, 1-16 (1983).

N. V. Konovalov, “Polarization matrices corresponding to transformations within Stokes cone,”
Preprint No. 171, Institute of Applied Mathematics of the USSR Academy of Sciences (1985).

I. M. Gelfand, R. A. Minlos and Z. Ya. Shakiro, Representations of the Rotation and Lorentz Groups
and their Applications (Pergamon Press, New York, 1963).

R. Gorenflo and S. Vessella, Abel Integral Equations (Springer, Berlin et al., 1991).

24



Eleventh Conference on Electromagnetic & Light Scattering

Generalized Lorenz-Mie: the third decade

Gérard Gouesbet and Gérard Gréhan

LESP, UMR CNRS 6614, CORIA,
Université de Rouen et INSA de Rouen,
76 801, Saint Etienne du Rouvray, FRANCE

Abstract

The generalized Lorenz-Mie stricto sensu is the theory of interaction between an
arbitrary shaped beam (typically a laser beam) and a homogeneous sphere (with
other additional assumptions that are not required to be discussed here). As
indicated by its name, this theory is a generalization of the Mie’s theory (that we
prefer to name Lorenz-Mie theory) which is now exactly one century old, after the
famous paper by Mie, in 1908, that we are currently commemorating. The
present paper provides a review of the work accomplished during the past
decade in this generalized field.

1 Introduction

The first paper on generalized Lorenz-Mie from Rouen (GLMT) has been published in 1982 [1]. It
dealt with the case of a “Mie’s sphere” (a terminology used here for convenience, although it has been
criticized) illuminated on-axis by a circularly symmetric beam (such as a Gaussian laser beam). In 1988,
we published what we consider as the “pivot” paper on GLMT, dealing with light scattering from a “Mie’s
sphere” arbitrarily located in a Gaussian beam [2]. Although this paper is somewhat specified for the case
of a Gaussian beam, it actually provides an arbitrary beam theory as discussed in [3]. As a whole, the
building of the formulation has typically taken a decade before the possibility of effective applications
being possible.

An overall exposition of the GLMT can be found in a manuscript which has been available from
www.coria.fr [4], since 1996. Three review papers have also been published. The first one, in 1991 [5],
dealt with about one decade of GLMT. It essentially contains, under a single roof, various aspects of the
formalism. The second review paper, in 1994 [6], three years later, could discuss applications of GLMT to
phase-Doppler anemometry, more specifically to what has been a troublesome feature of this
measurement technique, known as the trajectory ambiguity effect (or defect). A few other applications are
also briefly mentioned. The third review paper, dated 2000 [7], could contain the discussion of extensions
of the theory (generalized Lorenz-Mie theories for various other shapes of scatterers) and of applications
(radiation pressure, rainbow refractometry, imaging, morphology-dependent resonances, phase-Doppler
instrument, miscellaneous).

2 The past decade

GLMT is now about 3 decades old. Simplifying a bit, it is correct to state that the first decade has
essentially been devoted to the development of the theory, to its numerical implementation, and to
various ramifications of it, as obvious from [5], in 1991. The second decade has been devoted to the
development of various applications (although further theoretical advances were still of interest), as can
been seen from [7]. In the ninth section of this reference [7], we provided some recommendations for
future research (more GLMTs, more applications, irregular scattering, optical chaos). It is interesting to
examine how these prospects have been developed during the past (third) decade.

25



Eleventh Conference on Electromagnetic & Light Scattering

2.1 More GLMTs.

The headline of this sub-section was already a headline in [7]. The formalism of a GLMT for a sphere with
an eccentrically located spherical inclusion has been published in [8]. This GLMT has not yet been
numerically implemented but the associated Hamiltonian problem has been thoroughly investigated [9],
and references therein, exhibiting Hamiltonian (optical) chaos. We may also forecast the possibility of
irregular (chaotic) scattering [7], in connection with a GLMT for assemblies of spheres and aggregates
[10].

There has been also a vigorous effort devoted to the development and applications of GLMT for
spheroids [11]-[12], and references therein, which, in particular, can serve as models for deformed
droplets. But one of the more interesting prospects has been the development of a GLMT for unsteady
electromagnetic processes, more specifically for laser pulses [13], and references therein. Movies
showing the interaction between various kinds of scatterers and femtosecond pulses are available. GLMT
for laser pulses has also been used in the case when the scatterer is a spheroid [14], to suggest the
possibility of Cerenkov-based radiation from supra-luminic excitation in microdroplets by ultra-short pulses
[15], or even to investigate a two-photons processes in a microcavity [16].

2.2 More applications, and miscellaneous

The headline of this sub-section has essentially also been used in [7]. More studies have been devoted to
phase-Doppler instruments, to particle imaging sizing, to the laboratory determination of beam shape
coefficients, to a GLMT-Debye series formulation with the Bromwich method and to the theoretical
evaluation of a shadow Doppler velocimeter (references omitted to save room).

2.3 Out of Rouen

The above part of this abstract has been devoted to the results obtained by the Rouen-group. We would
like now to discuss a bit the use of GLMT out of this group. However, Rouen-papers on GLMT have
received nearly 2000 citations (ISlweb of knowledge) and, on the first of may 2008, searching for
generalized Lorenz Mie theory (with upper case letters for Lorenz and Mie, and a blank between the two
names) on Google returned 49400 pages. Therefore, we shall report only a sample (from 2000 on),
without pretending to exhaustivity.

A first set in the sample is made of theoretical papers related to mathematics or to physics such as by
Koumandos discussing a certain integral, motivated by force evaluations in optical tweezers, Lu Bai et al
devoted to cluster spheres scattering, Han et al dealing with the expansion coefficients of arbitrary
shaped beams, Zhang and Han for the scattering by a confocal multilayered spheroidal particle, or for the
scattering by an infinite cylinder, Nieminen et al discussing vector spherical wavefunction expansion by
laser beams, Zhang et al dealing with the description of shaped beams in terms of cylindrical vector wave
functions or Matoko et al reviewing whispering-gallery modes (references omitted).

A second set in the sample is devoted to optical particle sizing (the original motivation for the
development of GLMTs), and more generally to optical particle characterization, particularly to phase-
Doppler instruments or particle image velocimetry. Relevance of GLMTs to optical particle
characterization and to the science of particulates and aerosols is well illustrated by textbooks such as by
R. Xu [17], Davis and Schweiger [18], Albrecht et al [19].

A third set in the sample is devoted to radiation forces and torques, optical trapping, optical tweezers and
optical stretchers, to trap and manipulate particles e.g. [20]-[21], among many others. | would like to end
this brief review by mentioning two fantastic and fascinating applications of GLMT-like theories for optical
trapping and manipulation.

The first one concerns a new concept of earth-based satellites, as discussed in a NASA report, explicitly
referring to GLMT [22]. A shepherd satellite is proposed, based on the use of electromagnetic radiation
forces to position and hold a large number of small, specialized spacecrafts in a precise array. The
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concept derives from well-known optical scattering and gradient force techniques, which have been used
to trap and manipulate microscopic objects using laser radiation. Although the presumed physical
dimensions of the satellites will exclude the use of optical wavelengths, it is proposed that a technique
similar to laser optical trapping can be used at millimeter or microwave frequencies more appropriate to
larger object sizes.

The second one originates from a dream of A. Labeyrie who would like to photograph exo-planets details,
such as possibly mountains, forests, oceans, deserts, many light years away from Earth. This would be
achieved by using hypertelescopes (made out from many small telescopes) ranging over hundreds of
kilometers across, with elementary telescopes positioned and held by using radiation forces produced by
a laser operating in space, e.g. [23]. The relevance of GLMT-like approaches to such a project is known
to us via a personal communication.

3 Conclusion

The famous Mie’s paper, one hundred years ago, remains continuously cited and is still a benchmark
reference for light scattering theories and applications. Mie, as far as we know, could not predict the
advent of lasers, and the associated necessity to produce generalized Lorenz-Mie theories. We are now
living the end of the third decade of GLMTs. We have taken the opportunity of the commemoration of
Mie’s paper to provide a brief review of what happened with GLMTs in the past (and third) decade.
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Abstract

We study light reflection from flat particles with rough surfaces and fractal
statistics of topography. Discrete Dipole Approximation method is used to solve
the problem of light scattering. Refractive indices corresponding to dielectric and
metallic materials are taken. The sizes of particles are much larger than the
wavelength of incident light and the roughness scales are larger, comparable to
and smaller than the wavelength. The influence of the fractal dimension
parameter and the amplitude of heights of random topography on reflectance and
on the profile of the specular reflection peak is considered.

1 Introduction

Natural and artificial light scattering objects often have irregular shapes and rough surfaces. The natural
examples are ocean surface, terrains and soils at scales down to the rough surface of constituent
particles. The industrial light scattering applications deal with surfaces of metals and dielectrics of various
structures and composition. The interaction of electromagnetic waves with such objects is strongly
influenced by degree of surface roughness, i.e. the amplitude of heights and the slope statistics. Both for
scientific and industrial applications the knowledge of the optics of rough interfaces is required [e.g., 1-3].
In this paper we use numerical experiments to study light reflection from flat metallic and dielectric
particles with the surface roughness scales larger, comparable to and smaller than the wavelength of
light.

2 Numerical method

We use discrete-dipole approximation (DDA) [4, 5] method as it provides full flexibility for the geometry
of the scatterer (e.g., [6]). In the DDA continuous object is approximated with an array of dipoles. The
dipoles and spaces between them are much smaller than the wavelength of incident light. A system of
equations is required to describe basic interaction of each dipole with the total field. The solution of the
problem is the sum of the incident wave and the contribution from all the dipoles in the array [4]. The
disadvantage of this method is that computer memory requirements quickly increase with the size of the
scatterer as large objects must be approximated with large enough number of dipoles. Among the publicly
available computer codes we chose ADDA code [7] which is capable of parallel multi-processor
calculation for a single orientation of the particle.

The scattering object in our simulations is a thin square slab consisting of a substrate of constant
thickness and a layer representing random rough surface (Fig. 1). Fractal statistics of heights is used to
model the surface. In this case the standard deviation o in all points follows the power law [8]

() = |{[nF) - hO)F ) =G{F] ’
Ty

where D is fractal dimension (2 < D < 3) and ry is topothesy which influences to certain extent the
horizontal scale of roughness [8].

Horizontal size of the slab is 512x512 dipoles and the substrate layer thickness is 10 dipoles. The
thickness of the rough layer T varies between 0 and 50 dipoles and is further expressed in the fractions of
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the wavelength 1. The slab is illuminated at incidence angle of i=45° to the average surface normal. The
result of the calculation is the full scattering matrix Fy(6, @) obtained in the entire range of scattering and

azimuthal angles.

3 Results and discussion

Figure 1: Samples of particles with
different surface fractal dimensions
D.

Here we present examples of DDA calculations of phase
functions of particles with fractal surfaces. The scattered
intensity is detected in the principal scattering plane. We
consider two materials: aluminum in a resin with relative
refractive index m = 0.8 + 4.8/ and an arbitrary absorbing
dielectric m = 1.5 + 1.0i. The simulation of an infinite surface
is impossible in the frame of pure DDA therefore we simulate
as large particles as possible. For both cases we took
maximal size parameters (X=nd/i) for the horizontal
dimensions of the particles allowed by the DDA condition of
discretization (number of dipoles per wavelength dpl) [4, 5]
and our computer recources, X = 47 for the metal and X = 94
for the dielectric. To study the quality of discretization at such
large refractive indices as that of metal or dielectric with high
absorption we made a separate experiment. Comparison of
the DDA results for spheres with Mie theory solution gave
some discrepancies even at very large values of dpl.
However, the calculations for flat particles both with smooth
and rough surfaces showed that for the region of specular
reflection which is of interest for us DDA gives stable solution
in intensity already at dpl=10|m|.

Figs. 2 and 3 show phase functions of dielectric and
metallic particles with different fractal dimensions of surfaces
near the direction of specular reflection 8=90°. The thickness
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Figure 2: Phase functions of dielectric particles Figure 3: Phase functions of metallic particles
with different surface fractal dimensions D near with different surface fractal dimensions D near
specular direction (m=1.5+1.0i, X=94, t=11). specular direction (m=0.8+4.8i, X=47, t=11).
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Figure 4: Phase functions of dielectric particles Figure 5: Phase functions of dielectric particles
with different amplitude of topography heights © with different amplitude of topography heights 1
and D=2.5 near specular direction (m=1.5+1.0i, and D=2.9 near specular direction (m=1.5+1.0i,
X=94). X=94).

of the rough layer, i. e. the amplitude of heights is fixed (t = 14) and we study the influence of the
parameter D on the reflection peak profile. The case of smooth surface D=2.0 is used as a reference. The
most of the reflected energy is distributed in the peak. Its width is equal to that of the forward scattering
peak as they both are determined by diffraction law and depend on the dimensions of the projection of the
slab in the direction of incidence. The degree of surface roughness at D > 2 is shown at the example
pictures in Fig. 1. D=2.1 produces large scale topography elements. At D=2.9 the scales smaller than the
wavelength prevail, the surface is flat in average but has a porous structure. D=2.5 is an intermediate
case where all scales are equally present. The plots show that for all the types of roughness reflectance
is decreased significantly in comparison to ideal surface. However, intensity at 6=90° remains
approximately at the same level. The width of the peak is different. It is wider for D=2.1 where large scale
areas act like finite mirrors and produce dispersion of the scattered intensity. Small scale roughness at
D=2.9 leads only to the drop of reflectance.

In Figs. 4 and 5 we present phase functions for dielectrics with the same fractal dimensions of the their
surfaces, D=2.5 and D=2.9, correspondingly, and different amplitude of heights of random topography 1.
The plots show that T has strong influence on the reflectance of the surface. This influence depends on
the fractal dimension, i.e. on the surface slope distribution. At D=2.9 reflectance progressively drops. At
D=2.5 the decrease of reflectance is followed by the peak broadening.

3 Conclusions

From the results of our simulations we can conclude the following.

1. Fractal dimension changes surface slope distribution law and therefore angular dispersion of the
reflection peak. Prevailing topography features of high spatial frequencies which are smaller than the
wavelength does not produce broadening of the specular reflection peak and only decreases reflectivity.
Presence of roughness pattern at all scales with amplitude of heights comparable to or larger than the
wavelength leads to broadening of the reflection peak profile. Fractal dimension only slightly influences
reflectance.

2. The amplitude of heights of random topography appears to be much more important for the surface
reflectance.
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Abstract

The expansions of the incident arbitrary shaped beam in spherical, spheroidal and
cylindrical coordinates in the general case of oblique illumination is presented.
Based on the generalized Lorenz-Mie theory (GLMT), the scattered
electromagnetic fields of typical particles of arbitrary orientation illuminated with a
shaped beam are provided. The numerical results of the normalized scattering
cross section are evaluated.

1. Introduction

A strong effort has recently been devoted by us to the study of shaped beam scattering by typical
particles, such as multilayered spheroids, cylinder, eccentric sphere, due to the fact that a large number of
real objects can be modeled by those particles and to the possibility of subsequent applications of exact
analytical methods. One fundamental problem in the generalized Lorenz-Mie theory (GLMT) is to expand
of the incident shaped beam as a series of vector wave functions[1,2]. Once the beam-shape coefficients
are determined, the solution of scattering for shaped beam in oblique illumination by a spherical,
spheroidal and cylindrical particle can be obtained by means of the method of separation of variables. It
also has been extended to the case of multilayered particle.

The paper is organized as follows. Section 2 provides representations of the beam shape coefficients
corresponding to spherical, spheroidal and cylindrical coordinates respectively, in oblique illumination. In
section 3, the numerical results of scattering properties for a spheroid and cylinder in oblique shaped beam
illumination are given. Section 4 is a conclusion.

2. Expansion of incident shaped beam with respect to spherical, spheroidal and cylindrical
coordinates

We expand the incident beam in terms of the spherical vector wave functions m’“) (kr 6,¢4) and

n'" (kr,0,¢) as follows (TE Mode):[3] !
TOE=E Y YliGnrrm Y (kR,0,9) + Gl nll) (kR.0.4)
m=7wn=‘m‘ (1)

sph sph o , _
where G2 and G, are shaped beam coefficients in spherical coordinates (R, &, ¢)

n
m,spher __ s
Gn TE - Zp(ssm’n)cnsgn,TE

s=-n

n
m,sphere __ s
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(2)
And g, ., g,n, arethe beam shape coefficients in spherical coordinates for the incident shaped beam
propagating parallel to the z' axis. They can be derived from those results obtained by the three

computational methods given by Gouesbet et al, which are quadratures, finite series technique and
localized approximations [2],

The expansion of the incident beam in terms of spheroidal vector wave functions attached to an
arbitrarily oriented spheroid can be written as follows (TE Mode):

E'=E,) > i"[G "M (c.8.n.9) = G "ML (e.8.m. 6)

m=0n=m
. Jelly 1 . Jelli 1
+ IGJIZ;MIPNZ;Z (C, é/a 77a ¢) + lGrlt?;";l leZr(nr)z (C, é/a 77: ¢)] (3)

11 114 11 1 . . . .
where G'7.7 G, Gl P oand G are the expansion coefficients for arbitrary shaped beam
at oblique incidence in the spheroidal coordinates.

m,ellip sm
G, &rim.1E
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The expansion of the incident shaped beam in terms of the cylindrical vector wave functions m') ™

mﬂe
and nf)i)ie”” is described in the following[4].

E'=E, Y | Uy ()M, + 1,5, Je" singdg
m=—o ®)
where [, ;.(¢) and [, ,, (&) are the shaped beam coefficients in cylindrical coordinates (7,4, z)

0

. sphe ,spher
[m,TE = Z[lGZ;Ep uﬁecmn (é/) + G:,LT;\Z ueamn (é/)]

nm|

Ly = 2 G a,, (O)+G i e, (O]

n:‘m‘

l-mfn+l dan (COSé’)

Cm(6)= 2k d(coss) ©6)
k -m—n—1
an(§) =" Pl (cos)

Once the beam-shape coefficients in oblique illumination are determined in spherical, spheroidal and
cylindrical coordinates, the incident, scattered and internal fields can be expanded in terms of
corresponding vector wave functions. For spheroidal particle, as an example, incident fields are given in
Eq.(3) for TE mode, and the internal and scattered fields can be expressed as following[17]:
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N'D
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The unknown coefficients (7, . ... . Von » Own O

m

a).  [..)are determined by applying

the boundary conditions of continuity of the tangential electromagnetic fields over the surface of the
particle. Thus, the solution of scattering for arbitrary shaped beam by a homogeneous spheroidal particle
can be obtained

3. NUMERICAL RESULTS

We have the scattering cross section which is defined by

2
s

L|E
o(0,9)=4m z

0
Fig.1 show the angular distributions of the normalized scattering cross sections of a non-confocal

two-layered dielectric prolate spheroid with ka, = 4,ka, = 6 in two scattering planes of ¢ = 0°,90°, as
a function of the scattering angle 0 for a= /4, =r/6,y =0. The spheroid is illuminated by the
Gaussian beam of w, =21 . Fig.2 shows the normalized differential scattering cross section k°c(¢)/4

for incidence of the Gaussian beam with s =0.15 on an infinite cylinder with different cross-sectional
radii.

\\\_.//

0 A4 B W W 10 W W |
Sealterng angle  (degree)

Fig.1. Normalized scattering cross sections 7c(6,0)/ A* (solid curves) and

7o (0, /2)/ A’ (dashed curves) for a concentric non-confocal two-layered spheroid
(a=rx/4,B=nr/6,y=0) with ka, =4,6, n, =1.5,1.33, a,/b,=2(i=1,2) for
incidence of a Gaussian beam with w, =24 .
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KZo(p)4

. . . . . . . .
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Scattering angle ¢ (degree)

Fig.2. Normalized differential scattering cross section k’c(4)/4 for an infinite cylinder
(’7 =1.33 ,kry =12.57 ,z, =0) (solid line) and that for another one (7 =1.33,

kr, =18.85,z, =0) (dotted line) , all with Euler angles a =y =0, 8 = z/2, illuminated
by the Gaussian beam (TE mode) with § = 0.15

4 Conclusion

The representations of the beam shape coefficients by oblique illumination in different coordinates are
provided. By virtue of the Generalized Lorenz-Mie theory, the numerical results of normalized scattering
cross section for a non-confocal two-layered dielectric prolate spheroid and cylinder are evaluated.This
study is suggestive and useful for interpretation of electromagnetic scattering phenomena from arbitrarily
oriented spherical and nonspherical particles.
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Abstract

The internet is an important tool for the gathering and exchange of information for
scientists. In this paper we describe the current stage of development of a new
light scattering internet information portal and outline the upcoming technical
realization for the web pages as well as the benefits for the users. We also invite
the members of the light scattering community to participate in the development
of the portal.

1 Introduction

Light scattering is a subject of interest for different research fields like physics, geophysics, astronomy,
meteorology, biology, particle measurement, etc. Due to this multidisciplinarity an effective exchange of
information is of high importance for the scientific community. The internet allows sharing information
easily, on the other side needed information might be distributed over several web pages and difficult to
find.

In a current project funded by the German Research Foundation DFG our research group is working on a
new internet information portal for the light scattering community. This new portal will be loosely based on
the existing internet pages “List of Electromagnetic Scattering Programs” [1]. It will offer news like
conference announcements or latest books as well as a comprehensive list of computer programs to
calculate light scattering together with tools to help users finding fitting software to their scattering
problems.

The main difference to the existing page will be the possibility to integrate users into the publishing
process by enabling them to provide own content to the web page. By this users will no longer be
‘passive consumers’ of a given information offer but active clients.

The paper by Wriedt and Hellmers [2] describes the general motivation and structure of such an
information portal. At this point we would like to go more into the details and to present the project’s
current stage.

2 Realization of the new webpage

The main idea of the new information portal is to integrate the members of the science community as
active contributors into the process of keeping the information updated.

Core of the new information portal will be a Content Management System (CMS) for the administration of
the content. The use of a CMS enables to separate the content from the presentation, for example the
design of the web pages can be changed or expanded easily without loosing the current content.

A CMS also simplifies adding new information. It will be possible to provide users with own accounts so
they can create and edit own articles and use the page independently. For this no knowledge of HTML is
necessary as a CMS provides an easy to understand interface usually consisting of a text editor and an
upload tool for pictures.

Using a CMS on the other hand might lead to some problems. As in principle everybody could use the
CMS to publish problems may arise if there is no careful selection of users with access to the system. The
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access should be limited strictly to people from the light scattering community. Otherwise there might be
companies that will try to use the portal as platform for product placement or such called ‘internet trolls’
who will just try to provoke and bring disorder.

To protect against such unwanted disturbance selected users can be provided with special supervisor
accounts. These administrators will have the option to activate or delete user accounts as well as new
content. These supervisors not necessarily have to be from the Bremen research group as a CMS can be
administrated remotely.

2.1 Current development

The current development for testing purposes uses the free Joomla CMS which is developed in an open
source project. This CMS by default offers multiple options that improve the usefulness of the web page,
like a search interface, the generation of lists of latest news and most popular topics or a printer-friendly
layout for articles. It can be expanded by more useful extensions like a discussion board or a page
access counter. Another benefit is a ‘frontend’ user interface for registered editors. If one wants to create
a new article or edit some existing content all he has to do is using a login interface with his username
and password. After that the pages of the information portal are shown in the same way as for
unregistered users but with the accessible topics marked by a special symbol. For example if an user has
the right to publish articles in the area ‘News’ he will be offered an ‘add news’ button which is not
available for unregistered users. A logged in user will also see an ‘edit’ symbol behind his previously
published articles. Clicking such a symbol opens an easily usable text editor. So an author doesn’t have
to learn the usage of a special ‘backend’ interface; the whole process is intuitive. Also no special HTML
knowledge is necessary. By saving the new content the article is ready. The CMS can be configured to
hold this new article back until a supervisor checked it and gives clearance for its publication.

The supervisors on the other hand will have to use a special ‘backend’ interface for their work due to the
amount of possibilities of administration which can not be integrated into a ‘frontend’ interface. But also
the backend of the Joomla CMS is highly intuitive and can be learned fast and easily.

Figure 1 outlines the basic elements of the publication process for a registered user.

3 Computer programs

Another focus is on the revision of the list of computer programs to simulate light scattering [1]. The
existing list is going to be revised and updated. The list will consist of links to the software; additionally we
would like to invite authors of programs to upload their codes to the new portal. Placing the software on
the new portal is advantageous in cases authors change their working facilities or retire as the programs
will stay and be available. Of course this wouldn’t affect the intellectual property rights of the authors of
light scattering programs; they will keep full access to their work and can update, change or remove their
programs anytime.

Additionally we plan to develop a scheme to classify the software. This classification scheme then should
be used to program an internet tool that can help users to find fitting programs for solving their scattering
problems.

Such a classification has to consider several (different) aspects. Every program is based on a specific
scattering theory like Mie Theory, Discrete Dipole Approximation (DDA), Finite Difference Time Domain
(FDTD), T-Matrix Method (TMM), etc. So at the first sight it seems to be reasonable to base a
classification on the underlying scattering theories. But a closer look shows that all these theories have
significant advantages or disadvantages that affect different program attributes that might be of interest
for a user. For example a Mie code is suitable only for spherical particles but on the other hand is very
fast while DDA can be used for irregular particle shapes but is slow compared to a Mie program.
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Figure 1: Procedure for the work with a CMS.

So in practice it seems to be more reasonable to argue the other way round: for a user who wants to
calculate light scattering by a specific particle the explicit scattering theory is not the main issue as long
as he can find a program suitable for his scattering problem. A classification also must consider the
particle shapes and dimensions that can be handled by a program. Furthermore it might be of interest if a
program is available as source code (so modifications can be made) or as pre-compiled executable file
(which can restrict the use of the program to particular operating systems or hardware). This also should
be taken into account.

Because of these multiple attributes the development of an appropriate classification scheme is not a
trivial task. Therefore it will be done in cooperation with researchers working on the field of information
technology.

4 Outlook

A test system based on the CMS described above is currently in development. It should go online as
testbed soon. We will then invite the scattering community for tests, content and further suggestions. By
this feedback we plan to improve the portal further step by step.
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5 Summary

A new internet information portal for the light scattering community is recently in development. Compared
to other existing offers we plan an interactive approach which will allow the users to become active
members who can contribute own content to the portal. At this point we would like to invite the members
of the scientific community to provide us with their ideas and suggestions for such an information portal.
Especially welcome would be the active contribution of information like news, conferences, open
positions, etc. Please feel free to contact us if you are interested in becoming an editor and get your own
account for the CMS.
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Abstract

In this paper the generalization of the pattern equation method for solving the
problems of electromagnetic waves scattering on inhomogeneously layered
scatterers is presented. Numerical results are presented to demonstrate the
accuracy and efficiency of the method. A comparison of the results obtained by
the present method and other methods are shown and the restrictions on
applicability of method are established.

1 Introduction

The scattering problem of electromagnetic waves from three-dimensional (3D) conducting
inhomogeneously layered scatterers is of great scientific interest in radiophysics, theory of antennas,
radioastronomy etc. To solve this problem in rigorous statement the integral equation method is
extensively used. In solving the diffraction problem by this method the required characteristic is the
current distributed either inside of volume of the object, or on its surface. For objects of arbitrary shapes it
leads to great calculation expenses, therefore this method is used for the objects with simple shape.

In this paper, we extended the pattern equation method (PEM) to solution of the problems of
electromagnetic waves scattering from inhomogeneously layered scatterers. Earlier, this method was
already applied to the solution of the scattering problems for impedance and dielectric scatterers, and
also for conducting objects coated with dielectric materials [1-3].

Using the standard scheme of PEM (see [1-3]) the initial boundary problem is reduced to the system of
algebraic equations with respect to the coefficients of the expansion of the scattering pattern (spectral
function of a wave field) in terms of vector angular spherical harmonics.

Under the certain restrictions on geometry of the problem, which can be strictly established [1-2], the
received infinite linear system of the algebraic equations is solved by the method of a reduction, i.e.
truncation. Thus the expansion of the scattering pattern in terms of vector angular spherical harmonics
contains the finite amount of addends, which is determined by the maximal number of a harmonic N .
The restrictions of the method have been specified earlier by consideration of the electromagnetic
scattering problem for conducting objects.

The PEM is one of the most effective methods for solving the problem considered here. So, it has
been earlier established [1-2] that under the solution of the scattering problems for impedance scatterers
the rate of the algorithm convergence is mainly governed by the scatterer size and weekly depends on its
geometry.

In present work we consider the elementary kind of the inhomogeneously layered scatterer, namely, a
magneto-dielectric object coated with a magneto-dielectric layer with other parameters (other than the
core characteristics).

2 Problem Statement

Consider the problem of electromagnetic scattering of incident primary monochromatic (e'”) field E°,
H° by an arbitrarily shaped 3D compact magneto-dielectric obstacle bounded by surface S, and coated
with a magneto-dielectric covering with external surface S, .

Let the following boundary conditions be met at S, and S, :

(i x H)

L =G| Exi| = <) (1)

(ﬁxljll)Ll - (ﬁxf]")‘& . (E, x ﬁ)‘sl = (E' x ﬁ)‘sl , (2)
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where 7 is the outward unit normal to S, and S,; E=E" +E' H =H" + H' is the total external field;
El,F[ is the unknown field inside the dielectric covering (V,); H is the unknown field inside the

region V,, bounded by surface S/; E' ,H is the secondary (diffracted) field, which satisfies the system of

homogeneous Maxwell equations elsewhere outside §, (inside the medium V,) and the Sommerfeld
radiation condition at infinity.
Let's input the following notations: k, = @,/ &4, is the free-space wave number; ¢, =./4,/¢&, is the

characteristic impedance of the external medium V,; ¢, :gom, g, :gom are the
characteristic impedances, and k, =k,+/s,u, , k, =k, &,41, are the wave numbers inside the media V,
and ¥, with related permittivities &,, ¢, and permeabilities ,, u,, respectively. Let the outer (V,) and
inner (V,, V,) media be homogeneous, linear, and isotropic.

3 Reduction of Boundary-Value Problem to System of Algebraic Equations

According to the PEM standard scheme [1-3], we search the scattering pattern function, that is, the
function that defines the dependence of the diffracted field on the angles (9, (p) in spherical coordinates

(r,H, (p) for the far zone (for k,» >>1). The following asymptotic relations are valid:

E‘ZMF"E(WDMO( j ﬁl:M (6¢)+O(("’1’) J

1
(kr)2

Here F*, F" are the patterns for electrical and magnetic fields, respectively.

Under solution of the initial problem, the basic point of the PEM is to obtain the infinite system of
algebraic equations with respect to unknown coefficients of the expansion of the scattering pattern in
terms of vector angular spherical harmonics [4], which compose the orthogonal basis in the spherical
coordinates. These series of the patterns for electrical and magnetic fields have the following form

ZZa " xd70.0)-> Db, 1", 57 0.0, 3)

n=l m=- n=l m=-n
=3 a,i —cpm(e 2= b, " x B (0,0) 4)
n=l m=-n n=l m=-n
where
D" (0,0)=F x VP" (cos 0) - exp(im¢) , (5)
and a,,, b, arethe unknown expansion coefficients of the scattering pattern. In Eq. (5) P are the

associated Legendre functions.

By analogy with [1-2] using Maxwell equations and boundary conditions (1)-(2) one can get the

required expressions of the coefficients a b, . Then using decompositions of the fields E' H',

nm?

EI,I:I1 ,and E',H' in terms of the vector spherical harmonics and representations of coefficients a,.,

b in terms of the boundary values of the fields, we obtain the following system of PEM:

nm

» 4
_ 13 14 1 15 16 2
anm - Z Z( nm qpaqp + Gnm q[)bqp + Gnm q[)aqp + Gnm qp bq[} )’
q=1 p=—q
» 4
_ 23 24 1 25 26 2
b”m - Z Z( nm.gp % ap Gnm qpbqp Gnm,qp 4qp Gnm qpbqp)
q=1 p=—q
» 4
1 _ 37 38 i
anm - Z Z (Gnm qpaqp + Gnm qpbqp)’
9=l p=—q
= 4 (6)
1 47 48 i
bnm - z z( nm qpaqp + Gnm qpbqp);
g=1 p=—q

42



Eleventh Conference on Electromagnetic & Light Scattering

® q

_ 51 52
a - anm + Z Z( nm qpaqp + Gnm qpbqp )’

q=1 p=—q

q

61 62
Z (G”msqpa‘ﬂ’ + G”m qpP —qp );

1 p=—q

Ms

b =b) +

Q
Il

bl

b! are the unknown expansion coefficients of the field E',H'. The field EI,Hl

In this system a' b2 are the unknown expansion coefficients of the field EI,H inside

nm? nm ’

the covering (V,); a

nm’

represents the sum of a fleld past through a surface S, and a field caused by the equivalent surface
currentat S,. G’ (i,j=1..8)and a,

nm,qp

part of system (6), which are represented in surface integrals on S, and S, .
The system of PEM (6) is applicable for calculation of scattering characteristics of the arbitrary shape
covered scatterers which have not the axial symmetry. When the scatterer is an axially symmetric object,
i.e. the surface equation p(é, @)= p(0), the algebraic system (6) is significantly simplified and becoms

similar to the system for dielectric scatterers [2]: the sum of the index " p " disappears, and the index " p "
is replaced by " m"; the index "¢ " in the sum changes from |m| to o ; and the matrix elements of

system (6) are expressed in terms of single integrals.
For the verification of applicability of the method of the reduction to the received infinite system (6), the
estimations of the matrix elements and the right part of the system for large values » and g can be

made (see, for example, [1-2]). It allows us to specify rigorous restrictions on geometry of the scatterers.
So, if the incident field is a plane wave, the method of a reduction is applicable provided that the
geometry of the scatterer belongs to a class of weakly nonconvex bodies [1-2]. In particular, this class
contains all convex bodies.

b’ are the matrix elements and the coefficients of the right

nm?

4 Numerical results

Under the developed numerical algorithm of PEM, we carried out researches of accuracy of numerical
calculations for scattering characteristics. Moreover, we carried out comparisons of our results with the
results obtained by PEM for impedance and dielectric scatterers, and also by other methods. If we restrict
ourselves by the scatterers in the form of the bodies of revolution then it significantly simplifies the
numerical algorithm and reduces the surface integrals for matrix elements in the system of PEM to single
integrals. Some of the results are shown here.

We consider the axial incidence of a plane wave directed along the symmetry axis of the scatterer,
which coincides with the z-axis.

In the first example, we consider a dielectric sphere coated with a dielectric covering. Then S, and §,
are concentric spheres with a common center located in the origin of coordinate system, and p,(8) =a,,
p,(0)=a,,where a, and a, are the radiuses of inner and outer spheres, respectively (a, > a,). In the
case of sphere, from system of PEM it is possible to receive explicit expressions for a, , b, , which

correspond to the analytical solution of the scattering problem for sphere as in the theory of Mie series.
The bistatic RCS 0'//12 of the dielectric sphere coated with a dielectric spherical layer with size

nm ?

parameters k,a, =27, k,a, =2.1z is shown in Fig.1. Parameters of a material of a core and covering:
g, =4, p =1 (relative permeability), & =1, x4, =3-6i. The geometry of the sphere coincides with
those, which is presented in [5].

The quantity d/ﬂu2 was calculated under the formula

o k. 2 2
& e 00f +|r00f)
in the plane ¢ =0 (E-plane).

There are two curves presented: curve 1 is the solution obtained by the proposed method, and curve 2
is the result taken from [5]. In [5] the volume integral equation method is used for the solution of the given
above scattering problem. In the same work the result of calculation of the scattering pattern for the
dielectric sphere is presented. The result completely coincides with that received by using the PEM for
magneto-dielectric objects.

In the next example we consider the dielectric prolate spheroid coated by dielectric material. One
consists of two concentric spheroids with the semiaxes of the internal spheroid ka, =1.5, k¢, =3 and the
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semiaxes of the external spheroid ka, =3, kc, =6 . The regions in internal spheroid and its coating layer
are purely dielectric with the relative permittivities ¢, =3.24 and & =2.25, respectively. The result
plotted in Fig.2 for the coated spheroid shows the bistatic RCS's d/ﬂu2 normalized by 7rc22. The

scattering cross-section is computed in the planes ¢ =0 (curve 1: E-plane) and ¢ =7/2 (curve 2: H-
plane). Our numerical results agree very well with the results obtained by using the null-field method with

discrete sources [6].
Calculations of scattering characteristics were carried out at N ~1.5k,d for spheroid and N = k,d for

sphere, thus the two correct meaningful decimal digits were established in the solution for spheroid, and
four — for sphere. Here N is the upper limit of summation in (6), and d is the maximal diameter of the

scatterer.

30 1,E+00
g 1E01
g
S 1E02 |
o
o
& 1E03 | 1
g
£ 1E04 |
= 2
R
7 - 1E05 I
20 L ‘ ‘ ‘ ‘ : 1,E-06
0 30 60 9 120 150 180 0 30 60 90 120 150 180
scattering angle g (degrees) scattering angle g (degrees)
Fig.1. Scattering pattern for sphere Fig.2. Scattering pattern for spheroid

3 Conclusion

The generalization of PEM for the problems of wave diffraction by inhomogeneously layered scatterers
has been proposed. In all examples considered, high accuracy and convergence rate of the method were
demonstrated. The proposed method will be extended to the solution of the problems of electromagnetic
wave scattering by multilayered scatterers.
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Abstract

It is shown that the correct use of the null field condition for obtaining integral
equation requires that the surface, on which null field condition is satisfied,
covers the set of singularities of wave field analytical continuation into interior of
the scatterer. Moreover, it is demonstrated, that solution algorithm of the
obtained integral equation is fastest and most stable if the above mentioned
surface is constructed by analytical deformation of scatterer boundary.

1 Introduction

The wave field in the source-free domain is the solutions of Maxwell homogeneous equation system
(homogeneous Helmholtz equation) and thus are real-analytical functions [1]. Therefore, the correct
solution of a direct and inverse problems is possible only if an a priori information about wave field
singularities is taken into account [2]. In this work the importance of using such information is
demonstrated by applying it to the popular null field method. Null field method (NFM), as well as one of its
modification — T-matrix method — is the most widely used methods for solution of wave diffraction
problems [4, 5].

2 Scalar diffraction problem

First let’s consider the scalar diffraction problem. The following expression is true [1]

f {“(F')% - 5ur) G, (7, F')}ds’ = {ul (F), FeR\D, "

% on' n' -u’(F), FeD,

where u(¥)=u'(7)+u’(F) is the total field, «’(¥) - the incident wave field, u'(¥) - the scattered wave
field, G,(F,7")=exp(—ik|F—F"|)/4x |7 —F'| - the fundamental solution of Helmholtz equation. As is well
known, the second line in Eq.°(1) is a null field condition. If impedance boundary condition is satisfied on

boundary S of scatterer
{um—i a”(”} -0, (2)
N

ik On
then on the basis of Eq.°(1) the following null field integral equation can be written

ou(r') | Z 9G,(F,r")
on' |ik¢ on'

u’(F)+ j -G, (?,F’)}ds’ =0, M(F)ex, (3)
N

where X - some closed surface inside S.

It's a traditional to think, that the only requirement is the non-resonance (see below) of surface X .
Let’s show that it is not true.

Consider integral equation of auxiliary currents method [6] in case of Dirichlet condition on S (i.e. in
Eq.°(2) Z=0)

[vG, 7y ds'| =’ (7). , (4)

z
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In Eq.°(4) X is a carrier of auxiliary current inside S.

The following theorem is true:

Let ¥ be an arbitrary closed non-resonance Lyapunov surface (i.e. inner homogeneous Dirichlet
problem for domain inside X has only trivial solution). Equation Eq.94) is solvable if and only if X
encloses set A of singularities of wave field u'(7) analytical continuation into domain inside S.

Eq.°(4) has a single solution if theorem conditions are fulfilled.

If set Z=0 in Eq.°(3) and choose the same surface as X in Eq.°(3) and in Eq.°(4), then both equation
kernels will be allied and therefore obviously Eq.°(3) will have a solution also only when X encloses set
A.

Let’s illustrate the above statement by concrete examples of solution of diffraction problems on bodies
of revolution, when surface S can be expressed in spherical coordinates (r,60,9) as r = p(0) . Surface X
is constructed by three different methods: (1) by analytical deformation of S [7] enclosing set 4, by
displacement S on the same value A for all @ with (2) and without (3) enclosing set 4. Unknown
function in Eq.°(3) was approximated by piecewise constant function. Values of integrals of equation
kernel on fragmentation interval was replaced by values of integrands taken in the middle of intervals
multiplied by lengths of corresponding intervals, i.e. the simplest discrete sources method technique was
used to solve Eq.°(3) [5]. The «’(¥) was a plane wave propagating at angles ¢, =0, 6, =7/2.

Figure 1 shows the scattering pattern for the impedance spheroid with parameters ka=1, kc=5,
Z =1000¢i at N=N,=128, where N is approximation level, N, is the number of nodes used for Fourier
inversion of Green function. Figure legend: 1 — surface X obtained by analytical deformation of §
enclosing singularities, 2 — surface X obtained by non analytical deformation enclosing singularities (the
distance kA from X to set of singularities is equal to 107). Results obtained in case of singularities not
enclosed are not shown here, because even in case of enclosing singularities (at non analytical
deformation) obtained result is incorrect. Correct result for non analytical deformation enclosing
singularities can be obtained only at N=N;=512.
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Figure 1: Scattering patterns. Figure 2: Residuals.

Figure 2 shows residuals on different surfaces inside spheroid with ka =1, kc =5 for the case when the
surface X was obtained by analytical deformation of S. The lowest curve — residuals on surface X
(calculated at points between collocation points); the upper curve — residuals on surface nearest to S. It is
clear that zero field condition is satisfied with high precision everywhere. Figure 3 shows residuals for
similar calculations, when surface X~ was obtained by non analytical deformation of S with enclosing
singularities (N=N1=512).

As seen, residuals are small enough, but this was achieved by four-fold increase in the number of the
discrete sources. When surface ¥ does not enclose set 4 correct results could not be obtained at any N.

Figures 4 show scattering patterns for 2-foil of revolution (body produced by rotation of curve
pP(0)=b+acos260) with ka=2, kb=3, N=N,=256, Q=4, Z =0 . To illustrate the point, the diagram 1 was
calculated for the surface X obtained by analytical deformation until enclosing singularities, while
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diagram 2 was calculated for the surface X constructed as a sphere with the radius 0.999, as it would be
done in T-matrix method. In the last case, singularities located at 3.62 distance from the center of the
body are not enclosed.

10°

|F(6.0)

Figure 3: Residuals. Figure 4: Scattering patterns.

3 Vector diffraction problem

Let's now evaluate the vector model. Specifically, consider diffraction problem on perfectly conducting
scatterer. Using zero field condition the boundary problem can be reduced to the following equation:

:—(ﬁxEO(F))

z

()

’
z

{ﬁ x 474;16 ! [kzje(F’)G(,(F; )= (J*-V')VG,(F; 7’)st’}

, H=H'+H", H°,E° -primary, H', E' - diffracted (secondary) magnetic and electric
S

fields, S — scatterer surface, X~ — surface where zero field condition is set. As mentioned above, at the

where J¢ =(ﬁx1§)

surface of the scatterer the boundary condition is met: (fzx E(?))L =0,where E=E'+E'.

As in scalar case, the equation (5) is correct only if surface = encloses set A of analytical continuation
singularities

Let’s illustrate the above statement with the concrete example.

Consider diffraction problem for a plane incident wave propogating at angles ¢, =0, 6,=x/2 on
perfectly conducting spheroid with axes ka=1, kc=5. Figure 5 shows the scattering pattern for X
constructed by analytical deformation of S with N=N,=256. Figure 6 shows scattering pattern for non
analytical deformation of boundary surface with enclosing singularities with the same N=N;=256. As we
can see both diagrams in figure 6 are wrong. An accurate diagrams can be only obtained with
N=N,=1024. Figure 7 shows the residuals for the solution when surface ¥ was obtained by analytical
deformation of S until enclosing singularities of the wave field. Here again the lowest curve is for residuals
at the surface X (calculated for the points between collocation points), and the upper curve — at the
surface adjacent to S. Thus, in the vector case the null field condition is also satisfied with good
precision.

Conclusion

It is shown that the correct reduction of null field condition to the corresponding integral equation is only
possible if the surface, where zero field condition is satisfied, covers the set of singularities of wave field
analytical continuation into interior of the scatterer. The rational for this requirement is that integral
equation solution is based on analytical representations of the wave field, which exist only outside of the
field singularities. As a bonus, the obtained integral equation solution algorithm turns out to be the fastest
and most stable, when the above mentioned surface is constructed by analytical deformation of the
scatterer’s boundary.
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Figure 5: Scattering pattern. Figure 6: Scattering pattern.
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Figure 7: Residuals.
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Abstract

An efficient method is proposed for solving the problem of diffraction on complex-
shaped dielectric bodies. The initial problem is reduced to a system of algebraic
equations by expanding the scattering patterns in vector angular spherical
harmonics. It is shown that the method offers a high rate of convergence that
weakly depends on the distances between them. Examples of modeling of the
scattering characteristics of complex-shaped bodies are considered.

1 Introduction

The problem of diffraction on dielectric bodies of arbitrary shapes is one of the most complicated
problems of scattering, but, solving of this problem is urgent in a number of scientific and engineering
applications. The results of modeling the scattering characteristics for complex-shaped dielectric bodies is
of a great practical-purpose interest in such disciplines as medicine, meteorology, radio physics, radio
astronomy, astrophysics, and others.

The most efficient approach for solving of such problems consists in using scattering patterns of the
bodies as the quantities to be found. On the one hand, those characteristics are integral and therefore
smooth out the local disturbances of the equivalent currents arising in localities of a sharp modification of
the geometry of the boundary. On the other hand, those characteristics are often just what to be
determined in practice.

Such an idea is used in the pattern equation method (PEM), which has appeared to be a high efficient
technique for modeling scattering characteristics of groups of bodies and of the complex-shaped bodies
with impedance boundary conditions [1-2]. In this work, the developed approach is extended to solving
the problem of diffraction on on complex-shaped dielectric bodies.

2 Statement of the problem and it’s solution

Let’s consider the problem of diffraction of the primary monochromatic field E°, H° on the complex-

shaped dielectric body bounded by surface §. To define the scattering characteristics of this object we
shall replace it with a combination of simpler scatterers. We shall discuss the algorithm of the PEM for the
case of two bodies, but it can be easily extended for any number of objects.

Let the following boundary conditions be met at boundaries S, j=1,2 of the bodies:

i, < (H° + H\ +H)

— ryi
=n.X .
n.] J

J
s,

S; S;

o B+ B+ B)xi)| =)<,

Here, H=H'+H} +H, and E=E’+E, +E, - are the total external fields, E/, /! - are the unknown
fields within the volumes of the scatterers explored; i, - is the outward unit normal to S;. The

diffraction fields E‘Jl., FIJI satisfy the system of homogeneous Maxwell equations elsewhere outside
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surfaces S, and the Sommerfeld’s condition on infinity. Let the outer and inner media be homogeneous,
linear and isotropic.

In the PEM, the main characteristics to be found are the aforementioned scattering patterns of bodies.
Reduction of the initial boundary problem to the infinite algebraic system of the PEM is based on
expansions of these characteristics and the outer and inner fields E‘Jl., FIJI., E‘J"., FIJ’ into series of vector

spherical harmonics [3].

3 Results of calculations

Examination of the convergence rate of the calculation realization of the PEM for the problem of
diffraction on two dielectric bodies has shown, that in the case of bodies with a simple geometry
(spheres) the algorithm ensures 7-8 significant figures already when the parameter of reduction of the
algebraic system N =kd even for the case of minimal distance kA =0.02 between the objects. Here d - is
the maximum size of the scatterer. For the superellipsoids, the axial cross-section of which is given by the

following equation:
x 2m z 2m
DRCE
a c

(see fig. 1), the rate of convergence is noticeably lower. Here to have the results obtained with an
acceptable accuracy we need to take the value of the parameter N = (1.5+2)kd . It can be explained by the

fact, that the singularities of an analytic continuation of the diffracted field inward the scatterers [4] are
located close enough to their boundaries.

AZ

C

il

Figure 1: Axial cross-section of a superellipsoid

We tested the possibility of replace the complex-shaped body by the combination of more simple
objects based on comparison of the scattering pattern of two close located superellipsoids and the
scattering pattern of a single body with the corresponding size. The results obtained have shown that the
differences between the corresponding patterns are very small.

Let’s consider some examples of modeling of the scattering characteristics of the complex-shaped
bodies.

Figure 2 illustrates the scattering problem on the object, having the shape of a “grenade”. This figure
shows the scattering pattern calculated for two superellipsoids which are located one over the other. The
parameters of the upper superellipsoid ( ka, = k¢, = 4) are smaller than the lower one (ka, =6, kc, =4).

Further, let's consider the scattering problem on the object, having the shape of an “inverted
mushroom”, i.e. the body, composed of a hemisphere (ka,, =5) and a superellipsoid (ka, = kc, =2.5).
Fig. 3 shows the scattering pattern of such a body for various values of material parameters of
components. Calculations are carried out for the case of the longitudinal (along the rotation axis)
incidence of the primary wave.
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Thus, it is advantageous to present the complex-shaped object as a combination of more simple ones. It
allows modeling of the scattering characteristics of objects, which components have various material
parameters as in our example.

In all the examples of modeling the scattering characteristics of the objects with a complex geometry
given above, the distances between surfaces of their constituent elements were smaller than 0.01% of
average sizes of the objects. Thus the minimal distance between the objects practically didn’t influence on
the operational time of the computation algorithm. It allows one to speak about a high efficiency of the
method proposed.

F) g )

...........

...... v._ Lr\/\/ .. \/c ;\/\,:JVJ’\-\,\’\;/_

a) b)

Figure 2: Scattering pattern of object composed of two superellipsoids with parameters
ka,=kc, =4, ka, =6, ke, =4, kA=0.014, & =225 4 =1:a) the longitudinal (along the

rotation axis) incidence of the wave; b) the perpendicular incidence of the wave

i
[Egay
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] 1 FCE] ] 5 & ] 1 F B3 ] 5 B

a) grse = 2259 lurse =1’ g =1_4i’ /urhs = 1_4l b) grse = Erhs = 2259 lurse =1’ /urhs =1

rhs

Figure 3: Scattering pattern of an “inverted mushroom” - a hemisphere with radius
ka, =5 and a superellipsoid with parameters ka , = kc, = 2.5, located at the minimal

distance kA =0.011, the longitudinal (along the rotation axis) incidence of the wave
To verify our investigations we checked out fulfillment of the Optical Theorem [5], accordicg to which:
2z 7

~Im{F*(0=06,. p=@,) B} :im FE(0, 9) sin0dode .
00

The results are presented in Table 1. As one can see from the table, its accuracy is quite acceptable
irrespective the complexity of shapes of the bodies explored.

4 Conclusion

It is demonstrated the high rate of convergence of the calculation algorithm of the PEM that weakly
depends on the complexity of boundaries of the bodies. Examples of modeling of the scattering
characteristics of the complex-shaped bodies are considered even for the case when the components of
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the researched object have various material parameters. The validity of calculations is confirmed with
checkout of fulfilment of the Optical Theorem, which showed the good accuracy independent of the
complexity of boundaries of the bodies.

Table 1: Verification of the validity of the optical theorem for various complex-shaped objects

(8r]‘2 =225, “,, =1)
. L . 1 2r 7w = , .
Objects Parameters | —Im{F"(0=6,, p=0,)- B} g”'F (0, ) sinfd0dg
00
2 superellipsoids ka, =4
(a «grenade») ke = 4
the incidence of the wave is i 1 _6 30,3547 30,0580
perpendicular to the rotation 4 =
axis ke, =
2 superellipsoids IZI‘ 4
(a «grenadey) ¢ =
the incidence of the wave is ka, =6 26,0003 26,1011
along the rotation axis ke =
2
a superellipsoid and a ka, =2
hemisphere ke, = 12,2080 12,5100
(a «mushroom») Ky =4
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Abstract

A method to describe light propagation in concentrated disperse media with
optically soft particles is developed. Interference effects in scattering by unit
volume of partially ordered particles are taken into account. The radiative transfer
theory is used to describe the light propagation in a thick layer. The radiative
transfer equation is solved by the doubling method. Spline approximation of the
phase function approximation is used. The analysis of the angular structure on
the direction of layer illumination, its optical thickness, concentration, and size of
particles is carried out.

1 Introduction

A rigorous description of scattering in close-packed media requires the use of the theory of multiple
scattering of waves. There are a number of effects that cannot be described by the conventional radiation
transfer theory based on summation of intensities. Because of the complexity and cumbersomeness of
the mathematical apparatus of the multiple scattering theory, complete solutions can be obtained in
extremely rare situations.

We consider a model of radiation transfer in a layer of disperse medium with a high concentration of
optically soft particles [1]. The results of analysis of the angular structure of radiation scattered in the
forward and backward hemispheres, depending on the direction of illumination of the layer, its optical
thickness, concentration, and size of particles are presented.

2 Model of light transport in a layer

Let an azimuthally symmetric wide radiation beam with intensity /, be incident at an angle 6, to the normal
of a layer of a scattering medium confined from above and below by planes z = 0 and z = z,. The
scattering medium is a matrix with suspended monodisperse particles with radius R, and a relative
refractive index 7,. The refractive index n,, of the matrix is equal to the refractive index of the surrounding
medium and hence there are no reflections at the boundaries. The radiation is scattered inside the layer,
is partially absorbed and emerges from the layer through confining surfaces.

In order to describe the propagation of light in the layer, we use the radiative transfer equation (RTE)
[2] which can be presented in the following form for an azimuth-averaged scattered light intensity when
the layer is illuminated by a parallel beam:

é’[ z, 1 ’ ' !
ﬂ(ﬁ—zﬂ)wl(z,ﬂ)=Gfp(ﬂ,ﬂ)1(z,ﬂ)dﬂ +
-1
& 78(2072)
+15,0p(p, py)e ™+ 1,,0p(=, o )e (1)

where [(z, i) is the azimuth-averaged intensity of scattered radiation propagating inwards along the z
axis at an axial angle € =arcos u to the direction of incident light; o and & are the scattering and

attenuation coefficients; 1, =cosé,; p(u,u') is the azimuth-averaged phase function (redistribution
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function); p(cosy) is the phase function in a unit volume, normalised by the condition

1
Ip(cosy)dcosy =1; cosy = pup' +~J1—pu*\J1—p'* cosp, y is the scattering angle; 1 =cos@;
I

u'=cos@'; @ is the azimuthal scattering angle; I and I, are the intensities of the directional

radiation propagating into the layer, at the upper and lower boundaries respectively.
We solve the RTE with the following boundary conditions:

I(z=0,u>0)=1(z=0,u<0),
(z=z,,u<0)=1(z=2z,,u>0).

3 Calculation of the unit volume parameters

We begin the simulation of the parameters of close-packed media with their calculation in the low-
concentration limit. In order to calculate the parameters of a unit volume in this limit, we use the theory for
spherical particles [3].

To calculate the attenuation coefficient and the phase function of a medium with a high particle
concentration, we must solve the problem of diffraction of light from a many body system. A rigorous
solution of this problem has not been found so far, and hence various approximation methods are used to
calculate the attenuation coefficient and the phase function. For weakly scattering particles, the
interference approximation is the most convenient. According to this approach, the expressions for
differential scattering coefficient o, (), scattering coefficient o, , and the attenuation coefficient &, for a
medium consisting of identical spherical particles have the form

g, ()= woy, p, (7/)S3 (7,w), (3)
O, =Woyu, 4)
&y = W(gm —Oy t 0-01”)’ ()
where
u= [ p(7)S;(r,w)sindy (6)
0

w= Nv/V is the volume concentration of the particles, N is the number of particles with volume v,
contained in volume ¥ of the medium; &, (y)is the differential scattering coefficient of a medium with a

volume concentration w of particles; o, and ¢, are the scattering and attenuation coefficients of a
medium with a volume concentration w of particles; o, =X /v; &, =, +0, =2,/v; a, =2,/v;

2,, X, and X, are the absorption, scattering and attenuation cross sections of an individual particle;

and p,(y) is the phase function of an individual particle normalised by the condition Ip, (y)sindy =1.
0

Parameter u characterises the degree of optical interaction of particles. For independent scattering, its
value is equal to unity. The stronger the correlation of particles in space, the more the difference of the u-

value from unity. The structural factor S,(y,w) takes into account the effect of light interference

processes occurring in a system of correlated scatterers. For a system of hard spheres, the structural
factor is calculated in the Percus -Yevick approximation [1].

Figure 1 illustrates the variation of the phase function upon a change in the concentration of the
particles. The intensity of forward-scattered radiation decreases with increasing w and for quite high
concentrations, the indicatrix acquires a characteristic maximum for a nonzero scattering angle. Upon an
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increase in the value of w, the maximum is displaced towards large angles, while an increase in the
particle size displaces it towards small angles. Note that for certain values of the particle radius and

1
concentration, the asymmetry parameter g = Jp(,u),ud,u can be equal to zero, or even attain negative
-1
values (Fig. 2).
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Figure 1: Dependence of the phase function of a unit volume on the concentration w.
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Figure 2: Dependence of the asymmetry parameter g on the refractive index 7, and radius Rp of the
particles atw = 0.6

4 Angular structure of scattered light

In order to determine the luminance factors in the backward p(u, ') and forward o (g, ')
hemispheres, we used a calculation approach based on the layer doubling technique. In this method, the
computations are started by choosing a layer of a quite small optical thickness 7, so thatz, =7, 2",
where K is an integer. For a layer with an optical thickness tm, the luminance factors are determined
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approximately. The initial optical thickness was assumed to be equaltoz, = 107, which ensured a fairly

high precision of the results of calculations.

Angular dependences of the luminance factors o (u, 1') are displayed in Fig. 3 for various angles of
incidence. Upon an increase in the incidence angle (decrease in u'), the characteristic peak in the
angular dependence of scattered light becomes blurred. Two peaks can be formed. The separation
between them increases with ' decreasing. An analogous peak, but strictly in the backward direction,
can be formed if the phase function of the unit volume has a peak at an angle of 90°.

(1)
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0.06(

0.04] i

0.02] i

0_| 1 1 \ 1 1
0 02 04 06 08 u

Figure 3: Angular dependences of the luminance factors o (u, ') of a layer formed by particles
withR, =0.3um, n,=1.1 (1 =0.5um)andw=0.5, for ' =1 (curve 1), 0.99 (curve 2), 0.96 (curve
3), and 0.91 (curve 4).

5 Conclusion

We developed a method to describe propagation of light in layers of a close-packed medium formed
by optically soft particles. It is based on the interference approximation (to describe the collective
scattering effects), and the radiative transfer theory (to describe the light field in the multiple scattering
mode).

A numerical calculation method based on the layer-doubling technique and spline approximation of the
phase function approximation is used for solving the radiative transfer equation in a high-concentrated
layer.

The variation of the angular structure of scattered light is analysed for an azimuth-symmetric
illumination of the layer in a wide range of optical thicknesses. We have determined the salient features of
the angular structure of the intensity of light scattered in the forward and backward hemispheres in
dispersed layers with the phase function having a typical interference peak at nonzero scattering angle.
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Application of Riccati-Bessel Functions in Light Scattering
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Abstract

Riccati-Bessel functions, written as combinations of amplitude and phase functions,
have been used to re-express Mie theory. This leads to a simple physical
explanation of the scattered phase angle as the sum of a phase shift arising from the
optical path difference across the particle radius and an interfacial phase difference
at the surface of the particle. The mathematical properties of the different phase
angles are examined in detail by treating the order as a continuous variable.

1 Introduction
It has been shown that Riccati-Bessel (R-B) functions and their derivatives with respect to the wave

variable z = kr can be usefully represented in terms of amplitude and phase functions [1,2]. Thus for
spherical R-B functions:

¢,(z) =M, (z)sin 6,(z) @.(z)=N, (z)cos ¢,(2)
2,(2)=—M, (z)cos b, (z) 71 (z)=N,(z)sing,(z) (1)
E(z)=—iM, (z)expib, (z) & (z)=N,(z)expid,(z)

in which the spatial phase angles 6,(z)and ¢,(z) have the forms:
0(z)=z—nzn/2+y,(z)

2
3,(2)=0,(2)+ A, (2) @
and the amplitudes are related by
M, (z)N, (z)cos A, (z) = 1. (3)
Here, 6,(z) is fully defined by
0,(z) = tan”' {——9"" (2)} 4)
X,(2)

together with the boundary condition 8,(0) = 0. Also, the auxiliary phase angle y, (z) and the phase shift
A, (z) (associated with differentiation w.r.t. z) are constrained by nz/2>y,(z)> 0 and z/2> A, (z)> O .
z=0 Z>® =0 z—>0
From Egs. (1), (2) and (3), three ratio functions can be derived which will be applied later when
analysing light scattering. These are

¢,(2)

—Z" ) =—tand, (z)

P2 _ 21 L A (2)} 5)
¢, (z) M. (2)| tanb, (z)

Ziz) 1
PR [tan6,(z)+ tan A, (2) ]

Note that the definitions given here for spherical R-B functions differ from those given in Handbook of
Mathematical Functions [2,3].

2 Re-expression of Mie theory

To apply our treatment to light scattering, we consider the case of a homogeneous sphere of radius a and
refractive index m . This has external and internal size parameters « = ka and S = mka respectively for

light with a propagation constant of k. Hence the Mie scattering coefficients, obtained from the boundary
conditions of the electromagnetic fields at the surface of the sphere, are:
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4 = 2P, (@)-my,(Pp,(@)
" elB)s, (@)= me, () (@)
PR A I ACH R AVIACY

" ome (B, (@) 9, (B (a)

for n=1,2,3,.... Unfortunately, Egs. (6) contain no meaningful physics but this can be partially remedied by

(6)

. . . |
introducing the scattered phase angles u,,v, through the relations: a, = E(l—exp i2u,) and

b, = %(l—expinn) to give:

_ 2. (B, (@) = mp,(Bg, (@)
o (P x,(@)—mo,(B) ()
mel(Bp, (@) - 9, (P (@)
me, By, (@) -0, (B (a)
Moreover, contributions to the scattered phase can arise from only two possible sources which are:
(a) a phase shift 8,(f) -6, («a) associated with the optical path difference of intrinsic waves across the

particle radius, and
(b) an interfacial phase change u!, v across the particle surface.

Thus, the total scattered phase angles are assumed to have the form

u u'
{ n}ZHn(ﬂ)—Hn(a)Jr{ f} (8)
v, v

Egs.(8) are verified by substituting for u, and v, in Egs. (7) followed by the use of Egs. (5) to
eliminate 6,(a) from both sides of the equations so as to derive:
1

tanu,

7)

tanvy, =

tan[ 0,(6) 44, ] = —————
wng,5) " }
an6,
A (©)
tan| 0, (B)+V =<,
L.+ ]=— V
| tand,(p) "
2 2
where 4 :M”—z(a), B! =tanA (a)— A} tanA, (f) and 4 :M,Bﬁ =tanA, (a)— 4, tan A (B). Finally,
mM () M, (B)
u' and v are completely separated as
, [1-4!- B! w@nd, (B |and, (B
t =
e = B an 6, (f)+ tan’ 6, () 10)
- [1-4) - B} @n6,(B) |an6,(B)
tanv, = =——— 5 .
A’ + B tan@, () + tan” 6,(f)
3 Results
Although the treatment above was for spherical R-B functions, it may now be generalized to all R-B
functions having the form:
any = 2P0~ 9.(Be. (@) (11)

bocpl(Pa(a) -, (B ri(e)
in which ¢ is a constant for all orders and v=n+xfor0<x<1;n=0,1,2,.... Relations (8), (9) and (10) are
still valid and so:

u,=0,(f)-0,@)+u, (12)
an[ 6,08+, ] ———— (13)
{V +Bv}
tan 6, (/)
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[1-4,-B,tan6,(B) ]an6,(B)

tanu, = > , (14)
A,+ B, tan 8 (f)+tan” 6 (f)
M} (a)
where 4, =c—%—=, B, =tanA (a)— A4, tanA (f) .
M (p)

Egs. (7) have, however, been previously examined by van de Hulst [4] and this analysis too can be
extended for general R-B functions so as to yield the following results.
(a) Nodes of the first kind

These occur when 6, (f) = pzr since then ¢ (£)=0 and

tan{uv}zmz—tanﬁv(a) (15)
v, x(@)

to give u!,v, =0 and u,,v, =6,(8)— 60, (a). It may also be shown that v, and v, have the same
phase as v, , hence all four modes satisfy the conditions

VoV tt, = 6,(8) =0, (a) (16)

v

v-1°
and

viouvivl, ul =0. 17)

v=1° v+l

(b) Nodes of the second kind
These are present when ¢, ()= (p +1/2)x corresponding to ¢/(8)=0 and

tan{uv} ACII : (18)
v,|  xia) tang(a)
Thus,
u,=¢,(f-9,()=0,(H-06,()+A,()-A, () (19)
and
v, = A (B)- A (a). (20)

Such generalized expressions are valuable when investigating scattering since, by treating the order
as a continuous variable, quasi-continuous graphs can be plotted of the various phase angles rather than
the sparse sets of discrete points associated with spherical results alone. It should however be
remembered that in the notation P e e S
of general R-B functions, 9.425 S T T
spherical R-B functions
correspond to the orders 7 854
v=n+1/2. e =20, =30

Plots of the various 6283

contributions to the scattered
phase angles are presented

in figures 1-3 for a hypothetical
R-B particle having external and s 142 .
internal size parameters of 20 / — 6,(B)-6y()
and 30 respectively. In figure 1, ;
nodes of the first kind are 1.571 5
indicated by the crossing of all /

three traces at 6,(8) = p7 0.000

. 0.000 3.142 6.283 9.425 12.566 15.708 18.850 21.991 25.133 28.274 31.416
while for nodes of the second 0.(B) in rads
A%

kind only the u, and v, curves
cross at 6,(8)=(p+1/2)z. The Figure 1: Display of van de Hulst's nodes of the first kind at
nodes are similarly recognized 6,(p) = pr and the second kind at 6,(8)=(p+1/2)x.

in figure 2 where they are
displayed as a function of order and the positions of the v, and v ,, modes obtained. Finally figure 3

presents the interfacial phase difference as a function of order. Other features of interest are:
(a) modes make a maximum contribution to scattering whenever u,,v, = (p +1/2)z and the “half-power

points” are obtained from u v, = (p+1/4)z and (p + 3/4)x, (b) the two step edges of height 7 between

4.712 X

Phase Angle (rad)
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orders 25 and 26 are characteristic of resonance scattering and (c) an effective cut-off order exists for the

model sphere at v: 26.

4 Discussion
9.425
General R-B functions have been

shown to play a crucial role in 7.854
understanding the physical
principals underlying light
scattering from a homogeneous
sphere. As a consequence, the
scattered phase angles u, v, of
a hypothetical R-B particle can be
fully explained in terms of the 3.142
optical phase associated with the

optical path difference 1571
0.(p) -0, (a) of intrinsic waves

across the particle radius and an 5000

6.283

4.712

Phase Angle (rad)

— 6,(B)-6,()

|
v b e b b by gy g

0=20, p=30

interfacial phase difference u!,v! 0

at the surface of the sphere. The
latter functions can be calculated

directly from Egs. (10).

Furthermore, the present analysis

provides a physical rationale for 1.047
the sequence of steps in the form
of a descending staircase
reported in Ref. [1] for anomalous
diffraction at a large sphere.

0.524

5

10

15 20
Order,v

25

30

35

Figure 2. Comparison of the scattered phase angles u,, v,
with 6,(8)—-6,(a).

40

0.000

Other applications are light
scattering from:

(i) multi-layered spheres and
(after some modification)

(ii) infinite homogeneous circular
cylinders, but also

-0.524

-1.047

Phase Angle (rad)

40

(iif) acoustic scattering at a S Uy :
homogeneous elastic sphere and ’ vl |
(iv) nuclear scattering at a |
spherical square well. 2.094 5
_2.618 T R R AP SR G R B
0 5 10 15 20 25 30 35
Order,v
Figure 3. Interfacial phase difference at the surface of the
sphere.
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Abstract

A derivation and computational scheme, based on exact image theory, for the field produced by the
interaction of an outgoing vector wave harmonic with an infinite—extent plane surface is presented.
The method represents the angular—dependent Fresnel reflection coefficients of the surface as Laplace
transforms of a spatially-dependent function, which results in the reflected field appearing as a su-
perposition of image sources located at complex points along the normal axis within the surface
medium.

1. Introduction

Different scientific communities often come up with different methodologies to describe a particular physical
phenomenon. A case in point is the problem of describing an outgoing wave, emanating from a source, that has
reflected from a plane, infinite—extent surface. The light scattering community is interested in this problem in the
context of predicting the scattering and absorption properties of particles that are on or near a surface. Examples
of applications in this area include surface contaminant detection, the effects of soot on the albedo of snow,
and prediction of pigment layer reflectivity. On the other hand, the radio and antenna community has long been
engaged in the design of antennas for broadcast of microwave and radio radiation, and a key part of this process
is the prediction of the reflection of the radiation from the earth’s surface.

For both groups, the derivation for the scattered—reflected field begins at the same starting point, that being
the integral relation of Sommerfeld for the field produced by a radiating dipole in the half—space above a plane,
reflecting surface [1]. This formula was extended by Bobbert and Vlieger [2], and later by Fucile et al. [3] and
Wriedt and Doicu [4], to predict the field produced by reflection of vector wave harmonics (VWH), of arbitrary
order/degree/mode, that radiate outward from a source point above the surface. Since the scattered—reflected
field does not emanate from a source above the surface (i.e., the mathematical description of the field has no
singularities in the half-space), the field can be represented by an expansion of regular (or plane-wave) VWH that
are centered about some point in the half—space. This derivation, which was the objective of [2—4] and which will
be reviewed in the following section, provides an exact description of the field coupling between a particle and a
surface. However, the regular VWH description will have a finite radius of convergence; it will not, in general, be
able to predict the scattered—reflected field at all points in the half space. The formulation is also quite difficult
to implement numerically as it can involve numerical integration of highly oscillating functions over a complex
path — which is an aspect of the Sommerfeld integral from which the multipole formulations began.

The numerical challenges posed by the Sommerfeld integral motivated other groups — mostly in the radio
and antenna field — to develop the image theory formulation to the dipole half—space problem. This exact approach
makes use of the Laplace transform to represent the reflected field, in the half-space above the surface, as that
produced by a superposition of image sources located below the surface [5,6]. This method eliminates many of
the stiff numerical integration problems associated with the Sommerfeld integral, and thus can provide an efficient
algorithm for calculating the reflected field at any point above the surface.

By use of the addition theorem for vector harmonics, it should be possible to represent the image fields,
predicted by image theory, as regular VWH expansions about some point above the surface. By doing so, the
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image theory would provide a route to the particle—surface interaction problem. Such an application was performed
by Lindell et al. [7] and Muinonen et al. [8] for the case of a particle in the dipole limit.

To this author’s knowledge, an extension of the image theory to multipole fields has not been performed. This
extension is the objective of the paper — with emphasis given to the spherical particle-surface coupling problem for
spheres of arbitrary size/wavelength ratio. The image theory will be shown to provide a significantly more efficient
— and more reliable — method of computing the exact scattering and absorption properties of a sphere/plane
surface system. In addition, image theory appears to offer improved physical insight into the mechanisms by which

the surface affects the scattering behavior of the sphere.

2. Formulation

The detailed mathematical formulation of the multipole image theory cannot be presented in four pages; a much-
condensed version will be delivered here and the reader is requested to contact the author for the detailed formulas.
The geometry of the problem consists of a surface in the z — y plane at z = 0, and the positive z axis points
towards free space. The surface medium is characterized by a refractive index of m = n,, +ik,,. A time—harmonic
field (of factor exp(—iwt)) is generated from a source centered at position rg = & xs + 3§ ys + £ zg, with zg > 0.
This source, for example, could represent the scattered field from a particle that is centered at rg. In the most
general sense, this field is described at all points in the z > 0 half space, except r = rg, as an expansion of
outgoing vector wave harmonic (VWH) functions, i.e.,

Es =Y a, N (r—rg) (1)

with v being shorthand for degree, order, and mode, i.e., v = (mnp) with p = 1,2 denoting TM and TE modes.
The source field will interact with the surface, and a portion of the energy of the source will be reflected back
into the free space. Via the principle of superposition, the total field in the z > 0 half space can be split into the
source field and the reflected field.

The issue at hand is how to represent the reflected field, in a way that exactly satisfies the continuity
conditions at the plane surface. This will require that the outgoing VWH be represented in a functional form that
corresponds to the cartesian frame of the surface, and this can be performed via the multipole generalization of
the Sommerfeld integral [2-4]. For all points r — rg such that z — zg < 0, an outgoing VWH can be represented
by

NP (r —rg) = % IL,(Q) exp[ik(w) - (r —rg)] dO (2)
-
in which d2 = sin 3df3 da, the integration domain Q7 is (o, 8) = ((0,27), (7/2 +ico, w)), II, is the transverse
vector harmonic,
Mo = (=) (n(n+1))"2 £ X V¥, Hoppy = =iy X £ (3)

with Y}, being the normalized spherical harmonic, and
k-(r—rg)=k|((x —xg)cosa+ (y — ys)sina) sin 8 + (z — zg) cos 8 (4)

Equation (2) can be viewed as a representation of the outgoing VWH by a plane—wave spectrum, in which
the spectrum of propagation directions 3 covers both real and imaginary (i.e., evanescent) angles. Along the
surface at z = 0, each plane-wave component — both real and imaginary — will be reflected according to the
Fresnel relations. Accordingly, the reflected field produced by the outgoing VWH will be
Cy

= R-II, expfik- (r —rg)] d (5)

NGO (r —rg) = o /.
r Q
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in which Q" now has 3 : 0 — /2 —ioo, C, = (=1)™™"*?, rp = (vg,ys, —2s) denotes the location of the
image point for the source and R is a 2 x 2 diagonal matrix having the parallel and perpendicular Fresnel reflection
coefficients as diagonal elements. Note that R will be a function of 3.

The integral in Eq. (5) will converge for all points z > —zg; this formally covers the entire half space above
the surface. However, Eq. (5) is not an especially workable representation for the reflected field. The approach
adopted in Refs. [3,4,9] involves representing the phase factor as an expansion of regular VWHSs centered about
some secondary origin r; in the half space (this could be the source origin). This results in a regular VWH

description of the reflected field, via

N (r —rg) = > RSND(r—1;) (6)
I
with o
RIS = 8—” (R-TL,) - IT} exp[ik - (r; — rg)] dQ (7)
™ Jo+

The expansion in Eq. (6) is still constrained by the convergence conditions of Eq. (5). Specifically, Eq. (6) will
converge only for |[r —r;| < z; + zg. This constraint is not an issue if the objective is to represent, via a VWH
basis, the reflected field on the surface of a sphere, centered on r;, which is external to the plane surface. Such a
representation is needed to close the sphere—plane surface scattering problem. However, Eq. (6) cannot be used
to describe the reflected field in the far—field zone. An additional issue is that the integrations in Eq. (7) — which
must be performed numerically — can be difficult due to the highly oscillatory nature of the integrand.

An alternative approach to the representation of the reflected field — which circumvents the problems
discussed above — involves the use of image theory. Equation (5) shows that the reflected field can be represented
by an integral transformation of a vector product of the Fresnel coefficients and the transverse vector harmonic
function, with the kernel of the transform being the phase factor exp(ik - r). In this sense, Eq. (5) can be
viewed as transforming between the directional coordinates 2 = (3, «) and the spacial coordinates kr. The
objective of image theory is to represent the Fresnel coefficients as as inverse transformation, involving the same
kernel of Eq. (5), of a spatially—dependent function. By substituting this relation back into Eq. (5), switching the
order of directional and spatial integration, and employing Eq. (2), one should arrive at a formula which gives
the scattered—reflected field as a superposition of VWH sources that lie on the spacial domain representing the
inverse—transformed Fresnel coefficients.

Equation (5) actually offers two distinct choices for the integral transformation employed in the analysis.
The first method, which is adopted here, employs a Laplace transformation of the reflection coefficients and results
in a superposition of image sources at complex—valued points along the negative z axis. This route, which is based
on that taken in the previous dipole-based formulations [5, 6], will yield a distributed—source, outgoing VWH
representation of the scattered—reflected field that is exact at all points above the surface. A second transform
method — which is only mentioned in passing — would employ a Fourier transform of the reflection coefficients and
would lead to a distribution of image sources in the x —y plane at z = zg. Such a description would not appear to
have the same utility as the Laplace transform method, since it would involve a surface integration of sources as
opposed to a line integration. As opposed to the Laplace transform source points, however, the Fourier transform
image points would be real-valued, which would allow subsequent image translation operations using the VWH
addition theorem. In addition, the Fourier transform method would be better suited for azimuthally—dependent
reflection coefficients.

Although the basic concepts of the image theory are straightforward, a relatively complicated effort is
required to derive the formulation for the multipole VWH case. The key steps in the derivation are 1) expanding
Eq. (5) so that the integral appears as products of the individual Fresnel coefficients and inverse—transformed
VWH functions, and 2) performing the Laplace transforms on the Fresnel coefficients. In performing the first step,
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one encounters a new class of VWH functions, which are defined by

m

(3) _
: (n(n + 1)1 72

) a(kr) = V % (2hn(k7) Yipn(cos6,¢)), P

mnl

(o) = VxPOu)  (8)

Note that these definitions are similar to the standard VWHs, except that z as opposed to r is used as the pilot
vector. The P,,,2 function is an interesting quantity in that it has, at all points, an identically zero Z component.

By judicious use of the residue theorem, analytical formulas for the Laplace transform pairs for the Fresnel
reflection coefficients can be derived. These formulas allow for a relatively simple representation of the reflected
field as a distribution of outgoing VWH sources that lie at complex—valued points along the negative z axis (i.e.,
within the surface medium). This representation, which is valid in the entire half space, avoids the stiff integration
problems associated with direct evaluation of Eq. (5). Furthermore, by application of the VWH translation theorem
to the image points, a regular VWH expansion of the form in Eq. (6), and associated reflection matrix, can be
derived — again avoiding the integration problems in Eq. (7).

An interesting corollary of the image theory, as applied to the multipole VWH case, is that it is impossible
to construct a valid representation of the reflected field based on an outgoing VWH expansion centered about a
single point — with the sole exception of a perfectly reflecting surface.
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Gustav Mie and the evolving discipline of electromagnetic scattering by particles
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Abstract

The year 2008 marks the centenary of the seminal paper by Gustav Mie on electro-
magnetic scattering by homogeneous spherical particles. Having been cited in almost
4,000 journal articles since 1955, Mie’s paper has been among the more influential
scientific publications of the twentieth century. It has affected profoundly the develop-
ment of a great variety of natural science disciplines including atmospheric radiation,
meteorological optics, remote sensing, astrophysics, and biomedical optics. Mie’s pa-
per represented a fundamental advancement over the earlier publications by Ludvig
Lorenz in that it was explicitly based on the Maxwell equations, gave the final solution
in a convenient form suitable for practical computations, and imparted physical reality
to the abstract concept of electromagnetic scattering. The Mie solution anticipated
such general concepts as far-field scattering and the Sommerfeld—Silver—Muller
boundary conditions at infinity as well as paved the way to such important extensions
as the separation of variables method for spheroids and the T-matrix method. Key in-
gredients of the Mie theory are quite prominent in the superposition T-matrix method
for clusters of particles and even in the recent microphysical derivation of the radiative
transfer equation. Among the most illustrative uses of the Mie solution have been the
explanation of the spectacular optical displays caused by cloud and rain droplets, the
identification of sulfuric acid particles in the atmosphere of Venus from Earth-based
polarimetry, and optical particle characterization based on measurements of morphol-
ogy-dependent resonances. Yet it is clear that the full practical potential of the Mie
theory is still to be revealed.

Mie’s paper under the title “Beitrage zur Optik triiber Medien, speziell kolloidaler Metalldsungen” (Contribu-
tions to the optics of turbid media, particularly colloidal metal solutions) appeared in 1908 as part of the
third issue of the 25th volume of the renowned German physics journal Annalen der Physik [1]. At that
time Gustav Mie considered it to be a rather trivial application of Maxwell’s electromagnetics aimed at a
theoretical explanation of the beautiful coloration of metals in a colloidal state. He simply did not antic-
ipate the eventual phenomenal success of this paper and universal acceptance of his exercise in mathe-
matical physics as “the Mie theory.” Mie’s 1908 paper has been cited in almost 4,000 journal articles
since 1955, and the citation rate appears to increase rather than decrease with time. This magnitude of
success is highly unusual for a seemingly dry, abstract, and specialized article on physics and definitely
places Mie’s paper in the category of one of the more influential scientific publications of the twentieth
century. In particular, one cannot even imagine the modern-day functioning of such disciplines as atmos-
pheric radiation and remote sensing without the Mie theory. It thus appears highly appropriate to cele-
brate the centenary of the seminal Mie paper by analyzing its virtues and importance and by placing it in a
broader evolving context of electromagnetic scattering by particles.

The fundamental nature of Maxwell’s electromagnetics is now universally recognized. In a recent poll
of scientists the Maxwell equations have been voted to be the greatest equations ever [2]. However, the
situation in the late 19th and early 20th century was somewhat different. While one of the great
“continental” physicists Ludwig Boltzmann had immediately recognized the universal importance of the
Maxwell equations and was even quoted: “Was it god who wrote these lines...”, the stance of many other
continental and even British physicists had not been so unequivocal.

One of the decisive virtues of the Mie paper happened to be its explicit reliance on Maxwell’s
electromagnetics. As such, this paper would eventually be recognized as one of the great triumphs of the
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Maxwell theory. It is now widely acknowledged that the brilliant Danish physicist Ludvig Valentin Lorenz
(1829-1891) developed a theory of light scattering by spherical particles which is mathematically very
similar to the Mie theory. Yet he based his memoir on his own theory of light, which was at variance with
the Maxwell theory. This made the physical interpretations of the scattering theories of Mie and Lorenz
radically different and has ultimately led to the (largely unjust) neglect of Lorenz’s contribution.

In modern physical terms, the Mie theory belongs in the realm of so-called frequency-domain
macroscopic electromagnetics. This means, in particular, that all sources and fields are assumed to vary
in time harmonically (i.e., are proportional to the common factor exp(iwt), where i = (-1)"?, w is the
angular frequency, and t is time). The fundamental concept of electromagnetic scattering used by Mie can
be summarized as follows. A plane electromagnetic wave propagates in an infinite nonabsorbing medium
without a change in its intensity or polarization state. However, the presence of a particle modifies the
electromagnetic field that would otherwise exist in the unbounded homogeneous space. It is this modifica-
tion that is called electromagnetic scattering. The difference between the total field in the presence of the
particle and the original field that would exist in the absence of the particle can be thought of as the field
scattered by the particle. In other words, the total field in the presence of the particle is represented as the
vector sum of the respective incident (original) and scattered fields: E(r)=E"(r)+E**(r), where r is the po-
sition vector, and the common factor exp(iwt) is omitted. It should be recognized that the division of the total
field into the incident and scattered parts is a purely mathematical procedure. This means that classical fre-
quency-domain electromagnetic scattering is not a physical process per se but rather an abbreviated way to
state that the total field computed in the presence of a particle is different from that computed in the absence
of the particle. In other words, frequency-domain electromagnetic scattering is a physical phenomenon, but
not a physical process.

This concept of electromagnetic scattering by a particle remains as valid now as it was 100 years
ago. Yet it is truly remarkable how many confusing and even plainly wrong definitions of scattering have
appeared in the literature since the publication of Mie’s paper. Despite the purely classical character of
scattering of waves in the framework of macroscopic frequency-domain Maxwell’s electromagnetics, one
may frequently encounter the assertion that upon collision with an atmospheric particle, the incident pho-
ton can be either absorbed or scattered. Scattering is then defined as a random choice of new direction of
propagation for the photon according to the Mie theory. The neo-Newtonian visualization of scattering as
a “collision” of a light corpuscle with a cloud droplet followed by the corpuscle changing the direction of
flight appears to be intuitively appealing and is rather common. However, this artificial association of pho-
tons and the Mie theory invariably falls apart upon a closer look at what is actually meant by a “photon”
without an explicit quantization of the electromagnetic field in the presence of a material body (such as
the cloud droplet) consisting of an enormous number of elementary particles.

The discipline of radiative transfer has been subject to even more confusion in the frequent reliance
on an intuitive perception of successive scattering events caused by a sequence of particles. For exam-
ple, van de Hulst [3] defines the subject of the radiative transfer theory as “the play of radiation by re-
peated scattering in a cloud layer or any other slab of particles.” Thomas and Stamnes [4] discuss proba-
bilistic aspects of radiative transfer in terms of a “photon” executing a multiple-scattering trajectory, de-
pending upon the random nature of the angular scattering process. As such, multiple scattering by par-
ticles is presented as a process unfolding in time.

In truth, however, the classical concept of frequency-domain electromagnetic scattering is as applica-
ble to a group of particles as to a single particle. This means that multiple scattering by a particle group is
not a physical process per se but rather a purely mathematical expansion of the total electromagnetic
field into a Neuman series [5]. It is remarkable that the Neuman series alone (i.e., without attributing to it
any specific physical meaning) is sufficient for the derivation of the radiative transfer equation (RTE) di-
rectly from the frequency-domain Maxwell equations [5]. In other words, although the RTE has the formal
mathematical structure of a kinetic equation describing collisional particle diffusion, it follows directly from the
electromagnetic wave theory and the classical definition of electromagnetic scattering.

66



Eleventh Conference on Electromagnetic & Light Scattering

The Mie solution was intentionally constructed in such a way that the scattered field transforms into an
outgoing spherical wave in the so-called far-field zone (i.e., as the product kr tends to infinity, where r is the
distance from the center of the sphere and k is the wave number in the host medium). Although this was
done largely on “physical grounds,” the behavior of the scattered field at infinity later turned out to be at the
very heart of the problem of uniqueness of solution of the Maxwell equations in an unbounded space. In fact,
in constructing his solution Mie anticipated what is now called the Sommerfeld—Silver—Mdiller radiation condi-
tion at infinity applicable to electromagnetic scattering by an arbitrary finite object imbedded in a nonab-
sorbing unbounded homogeneous medium. This condition requires the transverse components of the
electric and magnetic fields to decrease at infinity as 1/r and the longitudinal components to decrease faster
than 1/r. Then it can be proven mathematically that the Maxwell equations have a unique (and hence physi-
cally relevant) solution. This fundamental aspect of electromagnetic scattering is discussed thoroughly in [6].

Another important ingredient of the Mie solution differentiating it from the Lorenz theory was the expli-
cit assumption of a potentially absorbing host medium. Interestingly enough, discussions of practical im-
plications of the Mie theory have often been intentionally simplified by using the assumption of a nonab-
sorbing host medium and hence a real-valued k. However, many natural and artificial bulk media are ab-
sorbing (e.g., water and water ice at infrared wavelengths). As a consequence, the issue of a complex-
valued k has caused a lasting controversy about how to define in the most appropriate way the corres-
ponding optical cross sections and scattering and extinction matrices for particles imbedded in an absorb-
ing host. It appears that the best way to address this problem is to adhere to actual optical observables
rather than attempt the generalization of quantities that cannot be measured directly. Recent studies
show that this approach also yields the correct generalized form of the radiative transfer equation [7].

The Mie theory belongs to the class of separation-of-variables solutions in that it explicitly exploits the
separability of the vector Helmholtz equation for the time-harmonic electric field in polar spherical coordi-
nates. A seminal theoretical development was the reformulation of the Mie theory by Stratton [8] in terms
of special so-called vector spherical wave functions (VSWFs) possessing very convenient analytical
properties. In the framework of Stratton’s formulation, the electromagnetic scattering problem is solved by
expanding the incident, internal, and scattered fields in appropriate sets of VSWFs. The expansion coeffi-
cients of the incident plane wave are computed analytically, while the unknown expansion coefficients of
the internal and scattered fields are then determined through the requirement of the standard boundary
conditions on the sphere surface as well as the radiation condition at infinity. Because the VSWFs are
orthogonal on the sphere surface, the resulting formulas have the utmost simplicity.

The separation-of-variables approach affords a rather straightforward extension to concentric core-
mantle spheres, concentric multilayered spheres, radially inhomogeneous spheres, and even optically
active (chiral) spheres. Furthermore, one can solve the scattering problem for a homogeneous or layered
spheroid in spheroidal coordinates, although in this case the expansion of the scattered field is a double
series, and the solution turns out to be rather complicated analytically and time-consuming when imple-
mented on a computer.

Stratton’s reformulation paved the way to several direct generalizations of the Mie theory, all of which
were proposed in the late 1960s — early 1970s and contain the original Mie theory as a particular case.
Conceptually the simplest of them is the point-matching method (PMM), in which the expansion coeffi-
cients of the internal and scattered fields are determined through the requirement of the boundary condi-
tions on the surface of a nonspherical scatterer. In principle, this technique is applicable to an arbitrarily
shaped and sized particle. However, convergence problems have imposed a rather severe practical limit
on the possible range of particle shapes in the simple original form of the PMM. These problems may
have been ameliorated, at least partially, with more advanced and complex versions of the PMM.

The so-called extended boundary condition method (EBCM) is also quite general in principle, al-
though it has been mostly applied to axially symmetric particles. Nevertheless, it has a wide practical
range of particle sizes and aspect ratios and has been one of the most frequently used numerically-exact
techniques based on a direct solution of the Maxwell equations.
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The multi-sphere or superposition T-matrix method is explicitly based on the so-called translation-
addition theorem for VSWFs and was developed to treat electromagnetic scattering by clusters of
spheres. Like EBCM, it has been used in a wide range of practical applications. Similar mathematical
properties of vector spheroidal wave functions permitted the development of a technique analogous to the
superposition T-matrix method but intended to treat electromagnetic scattering by a cluster of spheroids
in spheroidal coordinates. Specific information about all the above techniques and further references can
be found in the collective monograph [9] as well as in the review [10].

The Mie theory is explicitly based on the assumption that the incident field is a plane electromagnetic
wave. However, some types of illumination (e.g., a focused and/or very narrow laser beam) may substan-
tially violate this assumption. Still the Mie solution can be applied provided that the incident field is ma-
thematically expandable in plane waves. A thorough review of this generalization of the Mie theory was
given in [11].

Besides Statton’s book of 1941, far the greatest impact in the dissemination and popularization of the
Mie theory has had the monograph by van de Hulst [12], which in itself is one of the classical scientific
treatises of the twentieth century. The great efficiency of modern desktop workstations and PCs coupled
with the development of efficient algorithms for the computation of special functions entering the Mie solu-
tion has made numerical Mie codes an everyday tool for a large and rapidly expanding body of scientists
and engineers. Furthermore, the Mie theory is now firmly established as a fundamental aspect of gradu-
ate and even undergraduate courses on atmospheric radiation and remote sensing. The remarkable
reach of the Mie solution is well illustrated by its recent implementation on a mobile phone [13].
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Abstract

Various numerical methods are available for computing electromagnetic scattering by non-spherical
particles. This paper intends to give a concise introduction to three different types of methods and to
emphasize their applicabilities and shortcomings for calculating concerned optical properties efficiently.
The methods considered are Discrete Dipole Approximation (DDA) which is a special form of the Volume
Integral Equation Method (VIEM); T-matrix method which is applicable to axisymmetric particles and
extended T-matrix (Tsym) with particle geometric symmetries and modified quadrature scheme applicable
to non-axisymmetric particle. The optical properties as the outcome of the codes, mentioned above are
compared for hexagonal column and cylindrical shaped atmospheric particles to give an idea of the
computational demands and numerical accuracy. Tsym code has been found to be the most
computationally efficient.

1 Introduction

All exact theories and numerical techniques for computing the scattered field are based on solving
Maxwell’s equation either analytically or numerically. In contrast with exact analytical solutions, differential
equation methods compute the scattering field by solving the vector wave equation in frequency or time
domain while integral equation method are based on the volume or surface integral counterparts of
Maxwell’s equation. Thus a comparison study is required to assess the relative efficiency and accuracy of
the various methods for computing optical properties. Some comparison studies have been published
earlier for rotational symmetric [1] and non-symmetrical particles [2] using different integration schemes in
the same code [3] and comparing with DDA code [4]. Another similar comparative study for different
codes for non-spherical particles [5] has also been done. Here, for the first time, T-matrix, DDA and
extended T-matrix (Tsym) have been compared with respect to optical properties as the outcome of the
codes. T-matrix method is applicable for axisymmetric particles while DDA and extended T-matrix method
are for both axi and non- axisymmetric particles. The present study spans over large size parameter
range for hexagonal column and cylindrical shaped particles as the representative of non-spherical
particles in the atmosphere. The spread of the results from different codes is necessary to be understood
while applying these codes in remote sensing, biomedical applications, particle measurement and for
telecommunication purposes. Efficient computing of optical properties of the scatterer would be helpful for
simulation of optical particle size counters. We compare different codes concerning their computational
efficiency and numerical accuracy to find the best one for applying to above simulation.

In the paper, the physics of different methods such as VIEM (Volume Integral Equation Method), T-matrix
and extended T-matrix method has been explained. DDA has been considered as a good example of
VIEM. Finally, some scattering problems for hexagonal column and cylindrical shape have been solved
using three to give a comparative idea of the accuracy and efficiency as the outcome of each code.

2 Volume Integral methods

Vector Helmholtz equation is a homogeneous differential equation with non-constant coefficients that
can be transformed into inhomogeneous differential equation with constant coefficients which is much
easier to solve by introducing volume current density, J(r) in the equation. The solution to this
inhomogeneous differential equation can be obtained in terms of Green’s function which is the solution of
the corresponding differential equation with Dirac-delta-inhomogeneity subjected to the radiation
condition. The volume integral equation, which gives the field everywhere in terms of the incident and
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internal fields using finite grid of integration ( r, ) and field discretization ( r, ), can be discretized to solve
the scattering problem by a 3D scatterer in terms of polarization (P) as follows :

Kth(rh) = Em( (rh)_(.EhK/uP(':) (1)

Where Ky and Ky, (for c=b) are the matrices and E;.. is the incident field. Discrete Dipole Approximation
(DDA) is one of the famous volume-integral equation techniques.

2.1 DDA

Drain [6] have reviewed and developed DDA formulation. In DDA, solid particle is defined in
terms of finite array of dipoles. A dipole attains dipole moment after interacting with incident field at that
dipole and the field scattered by all other dipoles located at other sites in the particle. In DDA, the
scattering problem has been formulated as follows:

£K.P-E,,=0 ()

where, particle has been defined using array of point dipoles (b=1,....., M), each element K is a 3x3
matrix which is function of wavenumber of the medium and position of dipoles while matrix Ky, (for c=b) is
function of the polarisability of b™ dipole, P is the polarization of ¢ dipole (c=1,...,M), Eincp is the incident
field at b™ dipole. The system of 3M complex linear equations is solved for unknown polarization P, (b=
1,...., M) for evaluation of extinction and absorption cross sections Cey and C,ps [6].

3 T-matrix method

T-matrix mathematical formulation describes an efficient analytical method for computation of
orientationally-averaged light-scattering characteristics for single or ensembles of nonspherical particles.
For solving scattering problem a right handed spherical co-ordinate system, with fixed orientation in
space, is chosen whose origin lies inside the scatterer. Amplitude scattering matrix (S) is a 2x2 matrix
that linearly transforms the incident field components into scattered one. The incident and scattered fields
are expanded in terms of spherical vector functions, which work as basis function to expand the fields.
Unknown expansion coefficients are determined by enforcing the tangential boundary conditions. Incident
and scattered field expansion coefficients are related linearly via T-matrix [7].
It has been shown by Mishchenko [8] that scattering amplitude matrix is function of T-matrix elements.
The key feature of the T-matrix is that it does not depend on the incident or scattered direction but on
particle shape, size, refractive index and particle orientation with respect to reference frame. Thus, once
calculated T-matrix can be used for any direction of incident or scattered field. This beauty of T-matrix
reduces the computation burden efficiently. Evaluation of multiple nested summations in T-matrix
formulation requires CPU intensive computation which has been reduced by Mishchenko in his analytical
computer code [9].

3.1 Calculating T-matrix for axisymmetric particles:

Extended Boundary Condition Method (EBCM) by Waterman [7] leads to the following equation:
[r]=-reslst (3)

Where scattering matrix S linearly transforms internal field expansion coefficients into incident one and
matrix -Rg S transforms internal field expansion coefficients into scattered one. Elements of matrix S and
Rg S are surface integral over particle surface. The integrations have been solved using Gauss-Legendre
Quadrature scheme.

3.2 Calculating T-matrix for non-axisymmetric particles:

Numerical evaluation of surface integral terms involved in T-matrix computation (using EBCM)
makes the computation very CPU intensive which could be reduced by utilizing various symmetries of the
particle [10]. In principal, EBCM can be applied to any particle shape but current model [11] gives
analytically averaged optical properties of only axially symmetric particles with random orientation.
Kahnert [12] has considered a regular N-hedral finite prism shape with N+2 facets; prism has two facets
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as top and bottom and N rectangular same size facets at side. An improved quadrature (integration)
scheme has been used to evaluate elements of the T-matrix analytically which are surface integrals over
the particle surface. The improved quadrature scheme is applicable for top & bottom facets of N-hedral
finite prism shaped particle while surface integral over sides of prism has been performed using Gauss-
Legendre double-quadrature scheme proposed by Mishchenko et al. [13]. Use of particle geometric
symmetries and improved quadrature scheme lead the extended T-matrix method (Tsym code).

4 Results and discussion

T-matrix code of Mishchenko [14] which is applicable to axisymmetric particles, Programme Tsym
[3] by Michael Kahnert applicable to randomly oriented polyhedral prisms, and the DDA-code DDSCAT by
Drain and Flatau [4] have been used for the inter-comparison of optical properties as the outcome of the
codes. Codes have also been compared on the basis of their computational efficiency. The considered
scattering targets are axisymmetric particles (cylinder) and non-axisymmetric particles (hexagonal column
with sharp edges) of aspect ratio one with random orientation. For low size parameter, the optical
properties of a cylinder and a hexagonal column are nearly same so these shapes have been considered
in the computational example. In the example the atmospheric particles say ice-crystals and dust have
been considered with 3.7 um sensing wavelength. The refractive indices for ice and dust particles are
m=139+i0.007 and m =1.5+i0.012 respectively at the above wavelength. Inter-comparison of the different
codes leads to assess the relative performance of them in calculating optical properties. On the
computational efficiency front, the codes have been intercompared to get the idea of a better code in
terms of CPU time consumption and memory occupied for solving a scattering problem.

In the study, T-matrix code has been used for cylinder, DDA for hexagonal column and Tsym for
both the shapes with varying sizes. Figure 1 shows the scattering cross section calculated using T-matrix,
extended T-matrix (Tsym) and DDA codes. The scattering crosssection (Cs.,) calculated from different
codes is nearly same up to size parameter 8, a bifurcation occurs for DDA, T-matrix and Tsym codes for
size parameter beyond 8. The deviation in Cg, calculated from T-matrix and DDA has been observed
with increasing size. The same holds good for Tsym code for the two shapes.
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Figure 1: scattering crosssection (Cg.,) for (a) ice-particles with refractive index m =1.39 +i0.007
(b) dust with refractive index m =1.5+i0.012

Variation of asymmetry parameter (g) with size parameter has also been studied. Tsym code
underestimates the value of g for size parameter range 9-11 while overestimates for size parameter
beyond 12 relative to T-matrix and DDA code. The increase in refractive index leads to the increase in
deviation between all the codes with increasing size parameter.

Phase function has also been compared for various size parameters. Phase function for size parameter
one show fairly good agreement among all the codes and the same is true for size parameter five. For
size parameter 10, Tsym showed fluctuating values of phase function compared to those obtained from
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DDA and T-matrix for backward scattering angles. The Tsym code overestimates the phase function
values for hexagonal column and cylinder for scattering angle beyond 90 degree. Phase function of
hexagonal column by Tsym code is found to be flattened for high refractive index compared to that of
others. Frequency of the fluctuating phase function for hexagonal column and cylinder is found increased
for Tsym code for size parameter 15. Phase function is underestimated by the Tsym code relative to DDA
and T-matrix for this size parameter.

Tsym code has been found to be the fastest compared to T-matrix and DDA on machine with
specifications X-64 bit and 16 GB RAM. DDA was found to be the slowest among the three.

5.

Conclusion

Finally we conclude that all the considered codes show good matching up to size parameter 8 beyond
that deviation occurs. T-matrix and DDA code showed good matching compared to Tsym code. Tsym
code showed least computation time.
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Abstract

We use Monte Carlo simulations to study the volume and surface shadowing in rough-surfaced
particulate porous random media over the full three-dimensional angle space, and compare the
numerical results with the analytical Lumme-Bowell and Hapke models. For the task, we utilise
Markov chain Monte Carlo sampling to examine the influence of the analytical model parameters
on the quality of the fit. In addition, we compare the behaviour of the relative errors between the
numerical and the analytical models for a given set of medium statistics and best-fit parameters
over different angles of incidence and emergence.

1 Introduction

Particulate-volume and rough-surface shadowing have a significant impact on the reflectance of atmosphereless
planetary surfaces covered by regolith. The volume shadowing arises from the particle-scale porous nature of
the regolith, while the rough-surface shadowing originates from roughness in scales larger than the size of the
particles [1].

Several analytical models have been presented in order to model the bidirectional reflectance of a regolith-like
particulate surface, the Lumme-Bowell [2, 3] and rough-surface-corrected Hapke [4, 5, 3] models being likely the
ones most widely utilised. These models pursue to include the effects arising from the volume and rough-surface
shadowing, but their functional form is somewhat different due to the divergent approximations taken.

In our study, we compare the results from numerical geometric-optics ray-tracing light scattering simulations
with the two aforementioned analytical bidirectional reflectance models. We consider perfectly opaque particles
with Lommel-Seeliger reflectance, and concentrate on shadowing. The results show fairly good agreement be-
tween the numerical and best-fitting analytical models for most part of the angle space, but differences exist on
the distribution of the relative differences between the numerical and analytical models.

2 Lumme-Bowell and Hapke reflectance models

Since our main interest is on the volume and rough-surface shadowing, we consider only the first order scattering
and isotropic phase functions. With these simplifications, the Lumme-Bowell model is

. w  Ho q
i,e,a) = — l-g+
Jum e @) 4 po + ( AT + 1§ — 20 cos @)/ [ (upto)

)SLB(ia e, ), (1)

where i is the angle of incidence, e the angle of emergence, uy = cos(i), u = cos(e), a the phase angle, @ the
single scattering albedo, S,z the Lumme-Bowell shadowing function, ¢ the fraction of the surface covered by
holes, and p is the tangent of the mean surface slope. Likewise, the rough-surface-corrected Hapke model is
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where o, and p, are the effective cosines, and S ; the Hapke shadowing function, all described in more detail by
Hapke [4] and Bowell et al. [3]. Also, By sy is the amplitude of shadowing opposition effect, D the volume density.
and R is the product of the extinction coefficient and mean particle radius, considered to be a free parameter.

73



Eleventh Conference on Electromagnetic & Light Scattering

3 Numerical methods

3.1 Medium generation

We generate the media, of which an example is shown in Fig. 1, using a dropping-based random-packing method
inside a rectangular container with edge width w. The height & of the container depends on the final packing
solution. The media packings used in the study consist of 1 x 10° and 2 x 10° spherical particles with mean radii r
of w/500, and volume densities D of 0.2, 0.35, 0.4, 0.45, 0.5 and 0.55, three realisations for each D. For D < 0.5,
1x10° particles are used, but for larger densities 2 x 10° particles are neces _ary to make the packings tall enough
to allow for vertical variations in macro-scale surface roughness.

Figure 1: A medium realisation with D = 0.35. From left to right: no macro-scale roughness, fBm roughness with
H = 0.8, and fBm roughness with H = 0.4.

In addition to the particle-scale roughness arising from the random packing of the particles, we model larger
macro-scale surface roughness of several mean particle diameters and greater using two-dimensional random
fields. The packing is intersected with a random field following Gaussian correlation (Gc) or fractional-Brownian-
motion (fBm) statistics, and the particles above the random field are ignored in the scattering simulations. The
random fields used are functions of two parameters: the standard deviation of heights ¢, and a model-specific
parameter describing the horizontal roughness statistics. The fBm-fields are parametrised by the Hurst exponent
H, and Gc-fields by the correlation length /.

3.2 Light-scattering simulations

We use a numerical geometric-optics light-scattering code implemented to study the reflectance of a regolith-like
particulate medium. The code utilises standard Monte-Carlo ray-tracing methods combined with problem-specific
optimisations to simulate light scattering in a porous medium consisting of several millions of spherical particles,
the reflectance of a single particle following Lommel-Seeliger model with isotropic phase function. The large
number of particles was necessitated by the need to model both the volume shadowing due to the medium
porosity, and rough-surface shadowing and masking due to macro-scale surface roughness.

The ray-tracing simulation for media with parameters (D, H, o) (iBm) or (D, l,o) (Ge) result in a numerical
reflectance model that is a function of three angles (i, e, ¢). The simulation is computed for discrete values of i.
For each i, the scattering hemisphere (e, ¢) is discredised using a simple but efficient scheme that attempts to
keep the mean solid angle covered by a single bin constant over the whole hemisphere.

3.3 Model fitting

We apply Markov chain Monte Carlo (MCMC) sampling in the analytical model parameter space to see how dif-
ferent parameters influence the total relative difference Ebetween the numerical and analytical models. Moreover,
we use the results of the sampling to derive the best-fit parameters for the analytical model against a numerical
model with given medium statistics.
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4 Results

Figures 2, 3, and 4 show a subset of the preliminary results of our study. The subset consists of simulations for
the case of random porous media with D = 0.2 and 0.5, and no macro-scale roughness.

First, from Fig. 4 we can see that the Lumme-Bowell parameters correspond rather accurately to the medium
parameters. In the case of zero macro-scale roughness ¢ = 0, the fit for D have minima around 0.2 and 0.5. Next,
the Lumme-Bowell models with the best fitting parameters determined from the minimum of E, presented in Fig.
2, show good compatibility for 0° < i < 60° over the scattering hemisphere. However, E can be larger than 100%
for combinations of i > 60° and ¢ > 140°, i.e., for the largest phase angles. In contrast to the Lumme-Bowell
model, E never rises above 100% for the Hapke model, shown in Fig. 3. Nevertheless, E > 20% for a major part
of angle space, and E < 10% for only slices in the scattering hemisphere.

L =60

l 20 90 16 20

Figure 2: Numerical models for D = 0.2 and 0.5 (up), the corresponding Lumme-Bowell models (middle), and E
(bottom). The contour levels are for E = 10, 25, 50, and 100% difference relative to the numerical model. Black
and white refer to E < 10% and E > 100%, respectively.
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Figure 3: As in Fig. 2, but for the rough-surface-corrected Hapke model.
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Figure 4: Relative difference E for the numerical models with D = 0.2 and 0.5 and Lumme-Bowell model as
a function of ¢, p, and 1 — D. The upper plots show the actual sampling results, while the lower plots show
the smoothed contour levels for E = 15, 25, 50, 75, 100%. Black and white refer to E < 15% and E > 100%,
respectively.

5 Discussion

We compared the results of numerical reflectance modeling with two analytical models. The study concentrated
on the first-order particulate-volume and rough-surface shadowing of perfectly opaque particles with Lommel-
Seeliger scattering laws for their surface elements. This can be regarded as a special case for the analytical
models, both of which can also include physics excluded from our simulations.

Also, the goodness-of-fit estimate chosen for the MCMC sampling has an effect on the best-fit parameters.
We tested the effect of this using mean squared residuals as a fit estimate instead of the mean relative absolute
difference and the best fit parameters differed somewhat. This was due to the fact that the two estimates empha-
sise different things. The former gives equal weight to the quality of the fit of areas of high and low reflectance,
whereas the latter emphasises the high-reflectance areas. We found the relative absolute difference to yield bet-
ter correspondence to the analytical model parameters, but more work is needed to study how great impact does
the choice of the estimate really have on the inverted parameters.
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Abstract
In this present, we have found most effective calculation of light scattering for system of spherical
particles used by Mie theory and evaluated floor amount terms of series requisite for calculation
scattering characterization by fixed precision.

1 Introduction

As it is known, analytical expressions are found for the derivatives of commonly used Mie scattering
parameters, in particular for the absorption and the scattering efficiencies, and for the angular intensity
function. They are based on the analytical derivatives of the Mie scattering amplitudes and with respect to
the particle size parameter and complex refractive index. These derivatives are given with respect to the
total number density, to the medium radius and spread of the distribution, and to the refractive index. In
the case of the system of interacting particles - this is a random, but densely packed medium.

It is supposed that it is practically impossible to get an analytical solution to this problem of scattering in a
medium, therefore, it is essential to find the solution by using the Mont-Carlo method, i.e. by launching
many separate waves in the medium, and calculating the scattering of each wave on each particle and its
re-scattering on each subsequent particle. Calculations under the standard Mie formulae undergo two
modifications in this case:

a. In contrast to approximation in the far-field zone, which is what is usually done by scientists, we
should use a suitable common solution in the near-field zone.

b. Mie formulae should be rearranged in the form most effective for calculations with multiple
computations (reducing expenditure of computer computation time).
The final purpose of this modeling of light scattering on spherical particles based on Mie theory is to
compute radial and angular intensity dependence and to construct a method for the acceleration of the
computation process.

2 Solving the Problem of Light Scattering on Spherical Particles, Based on the Classical Mie
Theory
2.1 As is obvious, it follows from Mie theory that the light scattered on a sphere consists of partial
waves, emitted by multiple poles of electric charges on the sphere. If amplitude a, is n- electrical
conjugating wave and b, is n- magnetic partial wave, then:
Y (X) 0y () — gy, () ()
Oy =

- (2.1)
& Gy tmx) — miy oy, (mx) R

Un (X, (mx) — my, (X)), (mx)

&n G Y (mx) — m G (%)Y (mx)
The arguments of these functions are only x and mx, and functions do not depend on other functions. a,
and b, are only sets of coefficients which may be computed for all particles in advance. We will
repeatedly discharge a wave onto each particle, but we will leave a, and b, coefficients the same. That is
to say that there is no need for multiple, quite compound formulae computations, which include y and like
Bessel functions, each computation of which increases the computing time. For each particle you may
select a, and b, coefficients from the table in advance.
Using the computer model, developed at the Remote sensing department (T IC — GIS, Geographic
Information System) of the Astronomical Institute of Kharkov National University, it is quite possible to
model media, consisting of 256 different types of particles having different refractive indexes m and radii
r. This makes it possible to calculate and compile the tables of a, and b,, coefficients. The size of these
tables is relatively small and makes up 256 x n. Fig. (2.1).

(2.2)

n
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types of particles = 256

Fig. (2.1): The size of these tables is relatively small and makes up 256 x n

2.2 Based on the asymptotic expansion analysis of Hankel functions, we may show that the

asymptotic representation for spherical Hankel functions has the following forms:
sl

2.3)

Fz.::_:' (ker) _‘_ g~k (2.4)

The first of these asymptotic forms corresponds to the outgoing spherical wave, but the second
corresponds to the ingoing spherical wave. Thus far, from spherical considerations, the scattered field is
an outgoing wave at wide intervals between particles. But in generating functions, only hn(l)(z) should be
used. While analyzing the scattered field on a wide interval, we will also need an asymptotic expression
for generating hy! )(z) functions. Using Fig. (2.2), we may set the dependence of spherical Hankel function
hn(2)(z), which is obtained on the basis of the Bessel function of the second kind, on distance r, which is
calculated separately for different values of the m refractive index.

n

kr

Fig. (2.2): The dependence of spherical Hankel function on distance r

2.3 Let’s revert to m;, and 1,, which are described by dint of Legendre polynomial. They depend on
the scattering angle and are independent of particle characteristics.

i, (cos6) = o P (cos@) (2.5)

St
» a 3\
Tplcos6) = 8P (cos6) (2.6)

Fig. (2.3) demonstrates m;, and r, polar curves for n = 5. These curves are more visual when changing 6
from 0 to 360°. These functions (except mm, being constant) take on both positive and negative values.
For example, 1, is positive in the angular range of 0 to 45°, it is negative from 45° to 135°, and again
positive from 135° to 180°. All these functions have lobes in the forward direction (i.e. positive in this
direction), but in the reverse direction the lobes disappear for alternating n values.

6133,

150
N, 8 o, o)

alar g 1

0. o, 8 1=

210

Fig. (2.3): m, and 1, polar curves for n=5
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Fig. (2.4) demonstrates the angular dependence of m, and 1, functions for different values of @ scattering
angle. The scattering model in medium allows us to calculate the power-angle curve accurately within1°,
which renders doing more detailed calculations of m, and r, angular functions unnecessary.

Thus, the tables of m,, and r, functions have moderate sizes 180 x n.

n

e
5]

Fig. (2.4): The angular dependence of m, and r, functions for different values of @ scattering angle

For the estimation of a number of terms of a series [ ], indispensable in the achievement of given
accuracy, we used the fact that the m,(8) and r,,(8) functions take on values due to order-to-magnitude
which do not exceed n.

Therefore, we have the right to cast out the terms of |, ¢ series as soon as A, and B,, become less than
6/n, where & is the desired point.

n+1 r Ty . G|
= T —— 4.7 n.t.—— TV — (2.7
e Z n(n + 1) {4am (6 T0) * B E g5 we
In Fig. (2.5), (2.6), (2.7), (2.8) at the end of this paper are shown the A, and B, coefficients for x = 1, 3,
10, 30 in refractive index m=1.33+0.i.

Here is represented the angular dependence of scattering amplitude for a particle having x=10, calculated
to a small point, attainable when computing with the help of a computer and truncated to n=10 series of
Zne - Fig. (2.9).

In Fig. (2.10), we can see the relative calculation error of the truncated series. You may easily see that
the relative calculation error changes sharply against the scattering angle. We will estimate it based on a
maximum deviation from 0.

It is clear that when using n=x, the relative amplitude error will not exceed 1.5% (it fits with an intensity of
0,0002). This accuracy is well acceptable for computations of scattering by a medium consisting of
randomly packed particles.

a0 T

12088,

| | Pl U.Ulﬂ,o 0is 1 1 1 1 1 1 1 |
0 a0 &0 &0 100 120 140 160 120 o 20 40 60 a0 100 120 140 160 120

L ¢ 179, ko ¢ 179,

scaitering angel, degree scatiering angel, degree
Fig. (2.9): The angular dependence of scattering Fig (2.10): The relative calculation error of the truncated
amplitude for particle having x=10 series
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Conclusion

1. Mie formulae for general-case are discussed; (incl. for near-field zone);

2. Mie formulae are reduced to the form permitting the most effective computation; which means
that we reduced them to form allowing for convenient and fast computation; i.e. everything that could
have been calculated in advance was calculated and written down in tables. A special table for T and 1
functions, a special table for A and B coefficients, angular parts of the dependence, characteristics of
each type of particles, and a special table of scattering dependence for Hanckel functions which
asymptotically converges to 1/r, but in fact, differs in near-field regions.

3. In this paper, there was made an estimation of the minimum number of Mie terms, which is
necessary for the detailed calculation of scattering characteristics.

Our specific result is rather larger and not even twice, but let’s say 1.5 x times, what is sufficient.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley,

R. G. Gainger, J. Lucas, G.E. Thomas, G. B. L. Ewen. Caculation of Mie derivatives. Optical

Lorenz-Mie Scattering. Nit.colorado.edu/atoc5560/week8.pdf. E. S. Thiele, R. H. French. Light
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Abstract

We have successfully applied the polar decomposition theorem (PDT) to scattering matrix corresponding to
simple systems such as isolated metallic or dielectric spheres. The DDA method has been used as an
intermediate tool to calculate these matrices. We show how the parameters used by the PDT for describing the
scattering by spheres can be easily interpreted. It is also shown that the PDT provides us with a frame in
which the systems can be characterized by independent parameters representing magnitudes of simple
(virtual) elements constituting an alternative to conventional Mueller Matrix analysis.

1 Introduction

Non-invasive characterization of the size and properties of small particles, either isolated or on substrates as
part of a variety of systems, has been focus of the interest of many investigations and discussions over the last
twenty years. Since the scattering problem involving cylinders and spheres was analytically solved by Mie, the
scattering theory of regular and irregular scattering systems has been broadly developed by many other authors
[1-3]. From a practical point of view, different authors have made use of these theoretical approaches for their
scattering or polarimetry studies and applied to different experimental systems. Some examples of these are: the
study of small changes induced in the backscattering patterns of an irregularity or defect present in a particle
located on a substrate by making use of the Extinction Theorem[4]; the analysis of the linear and circular
polarization degree of light scattered by asymmetrical particles[5] or the evolution of some system parameters
by using a physic interpretation of the Mueller Matrix[6].

Concerning the bulk of the polarimetry information, completely contained in the Mueller matrix, some
methods have been proposed over the past few years to simplify the physics interpretation of the information
that can be obtained from the matricial formalism. One of these methods is the polar decomposition theorem
(PDT). This method, as we will show later on, reduces in a considerable way the number of parameters needed
to study different optical systems [7]. Even though, obtaining information from the Mueller Matrix making use
of the PDT has not been successfully accomplished yet.

We propose an application of the PDT method to simple systems formed by isolated spheres of size smaller
than the incident wavelength. Mueller matrix simulation is carried out by means of the Discrete Dipole
Approximation method (DDA). As part of the PDT method, we also present a comparison between some usual
magnitudes used in particle systems and the ones obtained from the decomposition of the Mueller Matrix. The
aim of this study is to show that we can improve the description of a typical system by analyzing the behavior of
PDT parameters (such as the transmission along the axis of a real diattenuator, the phase change induced by an
elliptical retarder, etc). These parameters reproduce the evolution of real systems and can be easily understood
from a physical point of view.

This study will be completed with other forthcoming experimental works, now under development.

2 System Geometry and Numerical Method

The scattering system we analyze consists of an isolated sphere, of radius ranging from r=0.1/ to r=0.51
and two compositions: the first is made of a dielectric material (SiO2 with refractive index, n=1.5 for 1=633nm)
and the second is a metal (Ag, n=0,135+3,988i for A=633nm). The sphere is illuminated by a plane wave of
A=633nm.

In this work we employ the discrete dipole approximation (DDA) [8], which is a computational procedure
suitable for studying scattering and absorption of EM radiation by particles with sizes of the order or less of the
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wavelength of the incident light. The DDA method deals with the object, in our case a nanoparticle, by
assuming that it is composed by a high enough number of elements, each one a polarizable dipole. The location
and polarizability of each dipole are specified and used to make the calculation of the scattering and absorption
efficiencies. The accuracy of the results depends basically on the computational capabilities. The system is
handled by assuming an array of N polarizable dipoles located at {ri}, i = 1,2,. . .,N; each of them characterized
by a polarizability ;. When a system is excited by a monochromatic incident plane wave Einc(r, t) = Eg.eikr#t,
where r is the position vector, t is time, and w is the angular frequency of the incident light. Each dipole of the
system receives an electric field that can be split in two contributions: (i) the incident radiation field, plus (ii) the
field radiated by all the other induced dipoles. The sum of both fields defines the local field at each dipole and is
given by

Eioc(r5) = Ejtoc = Ejjinc + Ejaip = Z Aje Py [1]

where Py is the dipole moment of the k-th element, and Ajx the interaction matrlx element jk. Once we solve
the 3N coupled complex linear equations given by Pk = axExkoc , We can find the extinction and absorption cross
sections for a target in terms of the dipole moments. By performing these calculations for a set of incident
polarizations, we can obtain the elements of the scattering matrix, or Mueller matrix.

The scattering matrices obtained from this method have been post-processed in all cases with an algorithm
that performs the PDT. After testing the purity of the matrices [7], it was found that in the cases analayzed, the
Mueller matrices obtained were pure, as expected from a system that does not produce any depolarization. Our
decompostion algorithm is equivalent to the sum of a diattenuator and an elliptical retarder being its order of
crucial importance its order.[9]. Therefore, the system matrix can be decomposed in the following way:

Mygs = Ma(dy1,d2,d3) - Mr(®,,0) - Mp(a,ti,ta, [2]

where My(ds, d2, ds) is the depolarization matrix (with di, d2 and ds being the depolarizance parameters and
equal to 1 in our case), Mr(®D, ¢, o)r is the “retardance matrix” (with @, the angle between the fast axis of the
retarder and the scattering plane, ¢ the phase shift and ¢ the rotation angle induced by the retarder) and Mp(a, t1,
t2) is the diattenuation matrix (with o the azimut or angle between the scattering plane and the first axis of the
diattenuator and t1 and tz are the transimissions along the first and second axis of the diattenuator). Due to the
simplicity of our system and its symmetry properties, a, @ and ¢ are zero. For this reason, we can decompose
our problem in an equivalent system composed by an ideal diattenuator aligned with the scattering plane and
with the fast axis of a retarder.

The Mueller Matrix of a spherical particle is usually described with four parameters (M11,M12,M3z3 and Mas).
However, if we examine in detail the polarimetric properties of our system and we make use of the PDT, we can
evaluate the behavior of our system by just considering three independent parameters, the total scattered
intensity (Muw), the transmission along one of the diattenuator axes (t1) and the phase shift induced by the
retarder (¢).

Once the meaning of the PDT parameters is well understood, this polarimetric method provides us with a
more handy tool to approach the analysis of the system.

3 Results

The PDT method allows us to extract all the polarimetric information out of a system using less parameters
and, what it is more important, being aware of the physics of the problem. Figs. 1 and 2, correspond to the
evolution of some polarimetric parameters of a metallic and dielectric sphere respectively. In Figs 1.a and 2.a we
have plotted the diattenuator transmission obtained from the PDT as a function of the scattering angle over the
range [90°,180°]. Figs 1.b and 2.b show the linear polarization degree (PL=-M21/M11) obtained for the sphere as a
function of the scattering angle.

It can be seen how both sets of curves in (b) can be exactly obtained from the correspondig sets (a). This is
not a general result but stands for the case of isolated spheres. When the scattered light is linearly polarized
(JPL=1|, the transmission along any of the axis of the diattenuator must be maximum (t:=0 or t1=1). However,
when P is zero, the transmission is the same for both attenuator axis (t1=0.5).
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Figs 1.c and 2.c, correspond to the direct polarizance (defined as the system capacity to polarize unpolarized
light) [7]. These curves also represent the inverse polarizance (that resulting of interchanging the incident and
the scattering direction) due to the symmetry of the problem. The polarizance has a strong correlation with
parameter t; for these systems showing its relationship with the capacity the system to act over the incident light
of the diattenuator obtained by applying the PDT method. As expected, Figs. 1c and 2c go to zero when the
diattenuator does not have any preference (t1=t>=0.5), whereas it goes to a maximum value when one of the
components is favored over the other.
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Fig 1. Metallic sphere (Ag) of different
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Fig 2. Dielectric sphere (SiO2) of different radii. a)Transmission coefficient of the diattenuator, b) Linear polarization
degree and c) Polarizance vs scattering angle

Finally, in Figs 3.a and 3.b we represent the phase shift introduced by our equivalent retarder. A strong phase
shift is observed for those scattering angles that correspond to a maximum in t; (also a maximum in the |Py]).
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Fig 3. Phase Shift vs Scat. Angle. a) Metallic sphere (Ag) and b) Dielectric sphere (SiO2)

For an easier visualization of the case r=0.51 we have preserved the continuity of the curve in Fig. 3 by not
limiting the phase axis to 360°.

Accordingly to these results, the optical behavior of metal and dielectric spheres can be characterize by the
PDT method, that is, by only looking at the diphase, retarder phase and diattenuator parameter t;.
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4 Conclusions

In the present work we have succesfully applied the PDT method to the most simple scattering system:
isolated metallic or dielectric sphere of size smaller than the wavelength of the incident light. The original
Mueller matrix for our polar decomposition was obtained by means of a conventional DDA technique. We have
shown how parameter t1, the transmission along one of the equivalent diattenuator axis, informs about both the
linear degree of polarization and the polarizance of the system. In addition,the diphase introduced by the system
in the incident light components appear when we apply the PDT method.

Finally, we must point out that, although we have applied the PDT method to a simple system for the sake of
a good comparison, it can be applied to other geometries, no matter its complexity. The sixteen elements of the
Mueller Matrix can be reduced to a smaller number of independent ones, never higher than nine. The same
number that the PDT method requires as a maximum. These nine parameters are easy to use and also represent
magnitudes of simple virtual elements which improve the understanding of the processes involved in complex
scattering systems.
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Abstract

We use the Mueller matrix model of inhomogeneous linear birefringent medium
in single scattering case derived in previous paper (JQSRT, 106, pp. 475-486,
2007) to study light transmission as a function of the propagation direction in the
medium. We show that an inhomogeneous linear birefringent medium can exhibit
dichroic behavior depending on direction of propagation of input light.
Additionally, we have observed the phenomena of enhancement of the scattered
light intensity for input unpolarized light propagated orthogonally to the optical
axes relative to one propagated parallel to the optical axes in the medium.

1 Introduction

The geometry of optical problem is shown in Fig. 1. The object is a plane-parallel anisotropic slab, located
in a plane defined by z = 0. Inhomogeneity of the slab is specified by random variation of its thickness
h(p). Thus, light impinging normally on the slab undergoes single scattering.

Incident Phase ¥ Observation
“
Radiation Screen | . Plane

| Xy

3 f S Atpln)
k7 A AL

Figure 1: Geometry of light scattering from a slab with roughness h(p).

The statistical description of the radiation that propagates beyond the slab’s surface is determined by the
random phase due to surface roughness. Specifically, we assume that the thickness distribution is
described by a uniform Gaussian process:

-1/2 =\
f(h)=(2nc?)" exp[—(h-h) /2cﬁ], @
where, mean thickness is h , mean-square deviation is ¢, . The correlation coefficient between any two
points on the surface of the slab has exponential form:

h -h 2
(o)~ "0) Flo:) ("ZLexp(—%j, @

Gy, Po

where, the distance between the points is p_ = p, —p, (see Fig. 1), and the correlation radius is p,, .
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The anisotropy of the slab is completely described by the spectrum of the matrix which describes the
slab, i.e., by polarization eigenstates and the corresponding eigenvalues [1]. The interaction of radiation
with such medium is described by the Jones matrix written in the medium’s eigencoordinate
system (xoy):

Jeigen exp(_ i¢X) 0 gx 0 (3)
0 exp(— id)y) 0 g,

The eigenvalues g, , are the complex transmittance coefficients of radiation, with polarizations that are
determined by the medium’s eigenpolarizations. For the rest of our paper, when we use the term “eigen” it
denotes the eigencoordinate system built on the medium’s eigenpolarizations.

It is known [1] that for a medium characterized by linear birefringence, eigenpolarizations are
orthogonal, and linear. Here, we consider the “fast” eigenpolarization on the basis vector X. We assume
that the field distribution of the incident radiation is Gaussian in the plane normal to light propagation
direction, with the waist of the beam located in plane z=0:

E"(p)=E" exp(-p*/a%), )

where, E™ denotes Jones vector in the centre of the light beam, and a is the light beam's radius.
After performing mathematics similar to [2], the Mueller matrix in the far zone for inhomogeneous
medium with linear birefringence in the eigencoordinate system is:

‘Dn + (Dzz q)ll - (Dzz 0 0
: (Dn - (Dzz (Dn + (D22 0 0
Melgen _ . ’ (5)
O O CD12 + q)zl I(q)lz - c1)21)
0 0 —i(@, —D,) D, + Dy
where,
kpw )’ n 1 (kpw)’
O = cDbrf 1— | Xy — - ; 6
Xy Xy ( nxy)eXp{ ( 22 j }—i_ciywz—i-lexp{ Gin2+1( 2z j } )
o8t =epfin, -1 i, n2), @
w=afl+42°/a%?|*; (6¢c)
c7>2<y =k’a, (no _1)(ne _1); (6d)
5 =1- exp(— ciy). (6e)

2 Simulation results and discussion

Using the matrix model Eq.(5), we examined the features of the transmitted light from inhomogeneous
birefringent medium as function of propagation direction for calcite CaCQO,. The analysis was carried out

for the light propagation direction ranging from 0° (parallel to the optical axes) to 90° (orthogonal to the
optical axes). The geometry for the numerical experiment was as in Fig.1 with slab which is cut in each
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numerical experiment orthogonally to the correspondent propagation direction in crystal. Thickness of the
slab set to 100 um . Wavelength of light was assumed to be A =0.63 um.

Fig. 2 demonstrates the dependencies of the matrix elements m; on inhomogeneity o, for four

directions: 0°,

25°, 45°, 90°.

0
—{1-0
0
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1 0,1 @ 45°
0
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Fig. 2: Dependences of the elements M; on the value of inhomogeneity.

It can be seen at directions 25°, 45°, 90%as c,—0 perfect phase plates are obtained (with corres-
ponding values of phase shifts). And as expected at direction 0°, we have an isotropic rough plate for all
values of inhomogeneity. While for the case o, #0, at dlrect|ons of propagation 25°, 45°, 90°, th
matrix elements M, and mM,, are not equal to zero implying the slab exhibits dichroism, i.e. there is
dependence of the intensity of scattered light on input polarization. Dichroism is maximum at direction of
propagation 90° which is orthogonal to optical axes. From Eq (6) it is note worthy that depending on the
value of difference of refractive indexes, the matrix Eq.(5) can become singular.

It is interesting to note that there is a difference in behavior of the matrix element m,; for different
directions of propagation depending on inhomogeneity as presented in Fig. 3a and 3b. From Fig.3b, the
difference has its maximum at approximately &, =0.25um. We interpret this to mean that within
inhomogeneities dictated by, < 0.5 um, the slab “enhances” unpolarized light intensity when light
propagates orthogonal to the optical axes relative to propagation parallel to the optical axes. To elucidate
the physical reasons for this “enhancement” effect, Fig.4 presents the dependences of the intensity of
output light for unpolarized input light (the value of m,,) for propagation direction 0° and 90° on
observation angle (Fig.1) for peak “enhancement” at roughness value &, = 0.25 um.

87



Eleventh Conference on Electromagnetic & Light Scattering

m,,(90")-m_ (0"

Z 0,09 ~
0 I
006{ ' =
[ | ..
/ [ ]
[ ]
0,03
um
G, um 0,0 0,3 0,6 0,9 o,, UM

b

Figure 3: Dependences of the element M;; on the value of inhomogeteity.
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Figure 4: Dependence of the element m,; on the observation angle.

Thus, the “enhancement” phenomena presented in Fig.3 results from that the value of m,, is a function of
the difference in refractive indices of the medium and depends on observation angle (see Fig.1).
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Abstract

Using the T-matrix approach light scattering simulation for biaxial anisotropic
non-axisymmetric particles is studied. For the expansion of the electromagnetic
field inside the scatterer the basis of quasi-spherical vector wave functions is
used that is obtained by inverse Fourier transformation. The calculation results
obtained have been compared with results from others light scattering programs
such as DDSCAT and ADDA.

1 Introduction

Simulation of optical properties of anisotropic scatterers is very important in different scientific and
technology applications. Many industrial materials are anisotropic. Such particles can be found for
example as white pigments in paper and color pigments in paint.

A modern and effective numerical tool for exactly solving the scattering problem is the T-matrix
approach [1]. At the present time light scattering by anisotropic (permittivity € and/or permeability y are
tensors) or chiral particles can be simulated by different approximate methods: Discrete Dipole
Approximation [2], Methods of Moments [3] and General Multipole Technique [4]. The T-matrix approach
is used for very accurate calculations and for the determination of the applicability of various
approximations, but it has been applied almost exclusively to isotropic scatterers. Thus the developments
of effective light scattering simulation methods for non-axisymmetric anisotropic particles using a T-matrix
approach are very important.

T-matrix solutions for anisotropic scatterers are mostly obtained for simple shapes such as uniaxial
anisotropic spheres [5], ellipsoids [6] or bianisotropic spheres [7,8]. Liu et al. [9] solved the
electromagnetic fields in a rotationally uniaxial medium by using the Separation of Variables Method and
used the T-matrix method to solve the scattering problem. In [10] the electromagnetic fields problem is
solved in a general bianisotropic medium. Doicu [11] has obtained quasi-spherical vector wave functions
(QSVWF) in the case of an anisotropic medium using inverse Fourier transform. The particular solution of
the light scattering problem using the T-matrix approach for uniaxial anisotropic (permittivity tensor has
£,=€,) non-axisymmetric particles is also given in [11].

In this work we extended Doicu’s approach [11] to biaxial anisotropic non-axisymmetric particles.
Parallelized Fortran code using OpenMP technology for calculating the T-matrix was developed.
Convergence of the developed program and comparison of simulation results with other light
scattering programs such as DDSCAT [2,12] and ADDA [13,14] are considered.

2 T-matrix approach for biaxial anisotropic medium

The electromagnetic fields in the anisotropic medium are characterized by the stationary Maxwell
equations
VxE=ikB, VxH=-ikD, k=uw]c,
v-B=0, V-D=0,
and the constitutive relations
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where ¢ — electric permittivity and y — magnetic permeability tensors. Here we consider the biaxial
anisotropic case, in which the permittivity tensor is diagonal and has three different complex components

e 0 O
€= 0 ¢ O], p=const.
0 0 g

In general a permittivity tensor can be transformed into this representation by a rotation of the coordinate
system. Particularly, this is possible for real-valued permittivity.
In the isotropic case (¢ and y are constants) the T-matrix method is based on an expansion of the total
electromagnetic field by spherical vector wave functions (SVWF)
MO (ke)=Vx[rg? (kr)], N2 (ke)=vxVx[ry? (kr)], ie{1,3},

where L/J,(Z,,(kr) - scalar Helmholz equation solutions containing Bessel or Hankel functions, k - wave
number in the medium. In the case of an anisotropic scatterer another basis inside the scatterer is
required. This problem is equal to the expansion of the unbounded dyadic Green function by
eigenfunctions of the vector Helmholz equation in the anisotropic medium. We use the expansion by
qSVWEF obtained by Doicu [11]
Xrenn (kl"), yrin (kl"), Xrir]m (kl"), yn':n (kl’)

For the new basis the formulas of T-matrix calculations are similar to those in the "classical" isotropic
case, except that SVWF functions in surface integrals of the Q and RegQ matrices will be exchanged by

functions of the new basis.
3 Parallelized code with OpenMP

For the new basis functions it is required to solve the Fourier transform or to calculate two-dimensional
integrals over the unit sphere for each point. This makes calculations two times more intensive than in the
isotropic case. One effective method to accelerate the program is using parallelism paradigm. There are
two well known standards for parallelization of programs: OpenMP, which is mostly used on shared
memory systems (multi-processors computers), and MPI, which is mostly used on distributed memory
systems (computer clusters). It is difficult to say whether OpenMP or MPI is better. Both have their
advantages and disadvantages. We use OpenMP, because it is more convenient and doesn’t require
modifications for the non-parallel mode.

For the parallelization of the integration process of the Q and RegQ matrixes elements on a computer
with N processors we divide the particle surface into N areas, provide integration separately for each area
and then collect the results. We also modified the LU decomposition algorithm for solving of T-matrix
linear equation using OpenMP technology. The efficiency of the parallelization E =1,/(n-1,), where I is

the calculation time on a computer with K processors, is presented in Fig. 1.
a) 1 b) !
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Figure 1: The efficiency of the parallelization of the T-matrix code for biaxial anisotropic particles: a)
calculation of Q and RegQ matrixes, b) solving linear equation for matrix T. The size of the T-matrix is
bounded by N;«=10, M;5=10, the number of integration points is 50x50.
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4 Comparison with DDA

To check our program we compared the simulation results with those obtained from other light scattering
programs such as DDSCAT, ADDA. There is good congruence for non-imaginary anisotropic refractive
indices as well for imaginary anisotropic refractive indices. There are some small differences in the case
of a complex refractive index and for a non-cubic shape. This can be explained by approximation errors
for the scatterer volume in the DDA approach.

The comparison of the differential scattering cross sections (DSCS) for biaxial anisotropic cubes and
ellipsoidal particles using the T-matrix approach, DDSCAT and ADDA are presented in Fig. 2. The
simulation accuracy (absolute change of results by decreasing one parameter of Nrank, Mrank, Nineta, Npni BY
one) is less than 10™. The number of points for integration on the ellipsoidal particle surface is Niheta X Npni
=55 x 22, the T-matrix is truncated at Nan=9, Man=7. For cubes these parameters are Nieta X Npni = 18 X
18, Nrank=11, M;ank=9. For the DDA programs the corresponding parameters are the box dimension for the
cubic particle 30x30x30 and for the spheroidal particle 30x30x60. In this case, holding of conservative
criterion by |m|2md/A=0.5 [2], where m — refractive index, d — dipole box size, A — wave length,
guarantees calculation accuracy less than 1%.

DSCS DSCS
0 -~ ADDA 10+= - - ADDA
s-polarized - DDSCAT] spolarized DDSCAT
1 i —T-mgtrfix, 1 )
0.1- p-polarized 01l \
0.014
0.01. '
1E-34 Cube ka=2, kc=2, Spheroid ka=2, kb=2, kc=4, )
m=(1.1+1i, 1.3+1.5i, 1.7+2i), 1E-3. m=(1.1+1i, 1.3+1.5i, 1.7+2i), p-polarized
1E-4 7=6.283185 - x=6.283185‘ | |
0 45 90 135 180 0 45 90 135 180

scattering angle / © scattering angle / °

Figure 2: Comparison results of calculation of DSCS for different scattering theory programs: a) cubic
particle, b) prolate spheroidal particle, k=2mr/A — wave number, a, b, ¢ — semiaxes of corresponding
shape.

5 Conclusion

The T-matrix approach has been applied to biaxial anisotropic non-axisymmetric scatterers. A parallelized
Fortran code using OpenMP technology for calculating the T-matrix was developed. The efficiency of the
parallelization of the developed algorithm for anisotropic particles is sufficiently high. The comparison of
simulation results to those using scattering programs based on DDA approach show good congruence.
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Abstract

One of the manifestations of the near field is a mutual shielding of particles. For
simple clusters, consisting of two identical spherical particles (bisphere), the
mutual shielding leads to reducing of the intensity of light scattered along the axis
of the bisphere. Calculations of the intensity of light scattered by randomly
oriented clusters of spherical particles show that for the model ignoring the near
field the intensity is significantly larger than for the model with the near field taken
into account.

1 Introduction

The classical radiative transfer equation (RTE), which is widely used in many areas of science, may be
inapplicable to densely packed random media since the derivation of this equation from the Maxwell
equations is explicitly based on the assumption that the scatterers are located in the far-field zones of
each other [1]. In this assumption, a number of important peculiarities of light scattering by densely
packed scatterers are ignored. In particular, the RTE does not take into account the near field. (In the
literature the near field is associated with a field, which amplitude decreases more rapidly than 7', where
ris a distance to a scatterer [2].) Up to now, the influence of the near field on the scattering properties of
densely packed media has not been studied adequately. In this paper, the mutual shielding of particles as
a phenomenon related to the near field is considered.

2 Shielding of particles by each other in the near field

The mutual shielding of particles can play a significant role when distances between particles of a
medium are comparable to their sizes. For particle sizes exceeding the wavelength, this phenomenon is
similar to the shadowing as described in [3]. But this phenomenon also reveal itself in systems of particles
with sizes much less than the wavelength. Let us consider qualitatively the peculiarities of light scattering
by a pair of closely located scatterers of small sizes as compared to the wavelength, which are polarized
as dipoles in the external field. Fig.1 shows two pairs of such scatterers illuminated by the external field
E? and configuration of charges induced in them. Scatterers are located in the scattering plane (in the
picture plane), and the incident radiation is polarized in the scattering plane too. In Fig.1a configuration of
charges is shown for the case when the particles do not interact in the near (electrostatic) field. In such
configuration of charges the intensity of light scattered by particles along the line AB passing through their
centers differs from zero. Fig.1b shows the configuration of charges in the scatterers interacting in the
electrostatic field. In this case the intensity of light scattered along the line AB is equal to zero. In other
words, implication of the near field leads to "shielding" of the scatterers by one another in the direction
passing through their centers.

Of course, a contribution of the near field in Fig.1b is exaggerated. Angular dependencies of the
intensity of scattered light by a pair of identical small scatterers in contact (bisphere) are shown in Fig.2.
The size parameter of particles is X=0.01, and the refractive index is m=10.0+i(. Scatterers are located
in the xz plane, and the angle between the z-axis and the axis of the bisphere is 45°. The scattering angle
is measured in the xz plane from the z-axis in the direction of the positive values of x (clockwise in the
picture). The dashed curves correspond to the model ignoring the near field components, and the
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continuous curves correspond to the model considering the near field. The thick and thin curves
correspond to the incident light polarized in the scattering plane and in the perpendicular plane,
respectively.

A A
6
‘ B v.B
E(O) E(O)
(@) (b)

Figure 1: The scheme explaining "shielding" of small scatterers (dipoles) in the near field. The line AB
passes through the centers of scatterers. If the interaction of the induced charges is ignored, intensity of
light scattered by particles along this line differs from zero (a). Intensity of light scattered along the line AB
by particles interacting in the near field is equal to zero (b)
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Figure 2: Intensity of light scattered by a bisphere versus scattering angle.

As is seen from the plot, dependence of the intensity on the scattering angle in the model ignoring the
near field components is identical to that for a spherical particle in the Rayleigh limit. In the model
considering the near field, intensity of light scattered in directions 6=0 and 6=1780" strongly depends on
polarization of the incident light. If the incident light is polarized in the scattering plane, intensity of the
scattered light in these directions is much higher than in the previous model. This phenomenon is caused
by substantial increase of the dipole moments because of electrostatic interaction of scatterers (Fig.1b).
The minimum of the intensity is located at 0=105" while the schematic representation in Fig.1b predicts it
to be at =135, At the interval of scattering angles of 100°<6<160°, the intensity in the model considering
the near field is appreciably less than that in the model ignoring the near field. This diminution of the
intensity is caused by "shielding" of scatterers illustrated qualitatively by Fig.1b.

In the previous example the near field is the electrostatic field. Shielding of scatterers arising in
the electromagnetic interaction of scatterers with sizes comparable to the wavelength is considered in the
following examples. Figures 3a and 3b show the intensity of light scattered by bispheres as a function of
the scattering angle. The axis of the bispheres is perpendicular to the direction of propagation of the
incident unpolarized light indicated by the wave vector kq. The size parameter of the constituent particles
of bispheres is X=kya=4.0, where a is the radius of the constituent particles, and their refractive index is
m=1.32+i0.05. The scattering plane is the picture plane. Two cases of orientation of the bispheres with
respect to the scattering plane are considered. (Orientation of bispheres is shown in the right upper
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corners of Figs.3a and 3b.) The solid and dashed curves correspond to calculations with the near field
components taken into account and ignoring them, respectively.

log(1/2X 2)
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@

log(1/2X?)
log(1/2X?)
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k,d 2X
Figure 3: Intensity of light scattered by bispheres versus scattering angle (a, b). The models calculated
with the near field components taken into account (continuous curves) and without them (dashed curves)
are presented. The constituent particles of the bisphere are in the scattering plane (in the picture plane)
(a) and in the perpendicular plane (b). For the orientation (a), intensity of light scattered in the direction of
the bisphere axis is shown as a function of distance k,d between the particles in the plot (c).

The dependence of the intensity of light scattered in the direction of the bisphere axis on the distance
between the particles is shown in Fig.3c. As can be seen from the plot, the difference between the
models is noticeable up to the distances of about several diameters of the particles. Fig.3d demonstrates
the dependence of the intensity of light scattered along the axis of the bisphere with touching components
versus size of the components. The dotted line corresponds to the intensity of light scattered at 9 =90°
by a single sphere.

The shielding phenomenon for more complex randomly oriented clusters of spherical particles is
considered below. Clusters of identical particles were generated according to the procedure described in
[4]. The generated clusters consisting of 50, 700 and 200 particles are shown in Fig.4. The size
parameter of the constituent particles of the clusters is X=1.5. The packing density of the clusters is
E_,:N(X/Xg)3=0.2, where N is the number of particles in the cluster, X,=kja,, and a, is the radius of the
smallest circumscribing sphere of the cluster. The intensity of scattered light by these clusters is shown in
Fig. 5. As is seen from Fig.5, ignoring of the near field results in a significant increase of the intensity of
light scattered by the clusters at all scattering angles. A behavior of the intensity at 0>60" attracts a
particular attention. For this angle range, the intensity weakly depends on the number of particles N in the
models containing the near field. Since the intensity is normalized to the unit of the cross section area of
the clusters (more precisely, it is divided by a quantity X ), this behavior of the intensity implies that in
this range of scattering angles the intensity is determined mainly by the particles of the upper layer of the
clusters. Other particles of the clusters are shielded by the particles of the upper layer. If the near field is
ignored, the particles do not shield each other and a large number of particles is involved into multiple
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scattering. This results in an increase of contribution from multiple scattering, which, in turn, leads to the
much higher intensity of the scattered light in comparison with the models considering the interaction of
particles in the near field. For the same reason, in the models ignoring the near field, the intensity
depends on the number of particles more significantly.

# &

Figure 4: Clusters of 50, 100 and 200 identical spherical particles. For X=1.5 the size parameters X, of
the smallest circumscribing spheres of clusters are 9.25, 11.9 and 14.7, respectively.
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Figure 5: Intensity of light scattered by randomly oriented clusters. The models ignoring the near field
(thin lines) produce substantially larger intensity than those taking the near field into account (thick lines).
The numbers of particles in the clusters corresponding to the curve types are indicated in the plot. The
refractive index of particles is m=1.5+i0.001 (left plot) and m=1.5+i0.1 (right plot).
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Abstract

We study how the internal electric field of oriented spheroids affects the scattered far
field. The internal fields have been computed for both oblate and prolate spheroids
in a fixed orientation with the incident wave propagating along the symmetry axis in
order to study how the deviation from a spherical shape affects both the longitudinal
and transverse components of the internal field. We plan to develop a method to
analyze the interference inside particles in a general way.

1 Introduction

We study the angular-scattering characteristics and the interrelationship of the internal electric
field to the scattered far-field for oriented spheroids. Mechanisms responsible for both the negative
polarization branch (NPB) and the intensity enhancement branch (IEB) of single particles have
been suggested by, e.g., Muinonen et al. [1] and studied for both spherical particles and Gaussian-
random-sphere particles by Tyyneld et al. [2, 3]. In parallel studies, Zubko et al. [4] used phase
randomization for single dipoles to investigate interference effects inside irregularly shaped particles.

At least for single particles, the role of the internal electric field in producing far-field scattering
characteristics like negative polarization and intensity enhancement near the backward-scattering
direction seems to have a two-part mechanism. The longitudinal component, i.e. the component
of the internal field parallel to the direction of propagation, seems to affect the overall scattering
characteristics at mid-range scattering angles and has little effect near the forward- and backward-
scattering directions. This is attributed to the fact that the longitudinal component of the internal
field has an odd parity with respect to the central plane perpendicular to the incident polarization.

The transverse component, i.e., the component perpendicular to the direction of propagation,
affects the scattering characteristics at all scattering angles, but dominates the longitudinal com-
ponent close to the backward- and forward-scattering directions, where the contribution from the
longitudinal component tends toward zero. The component of the internal field parallel to the in-
cident polarization has an even parity with respect to both the central plane perpendicular to the
incident polarization and the central plane defined by the incident polarization and the direction
of propagation. The IEB can arise, for example, from constructive interference between the op-
posing parts of the particle interior with respect to the plane defined by the incident polarization
and the direction of propagation near the backward-scattering direction. The NPB arises from the
asymmetry of the transverse component. The internal field is structured in a wavelike pattern with
alternating maxima and minima, which is analogous to the idea of incident wavefronts refracting
into the particle medium, propagating in opposite directions inside the particle, and interfering
with each other.
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Figure 1: We plot the real part of the Z-component of the internal electric field in the Y Z-plane for
¢/a =0.71 (a) and ¢/a = 1.40 (b). We also plot the real part of the Y-component in the X Z-plane
for ¢/a = 1/1.4 (c) and ¢/a = 1.40 (d). Finally, we plot the real part of the Y-component in the
Y Z-plane for ¢/a = 1/1.4 (e) and ¢/a = 1.4 (f). The incident electromagnetic wave is Y-polarized
and propagating in the positive Z-direction. The size parameter is * = 4 and the refractive index

is m = 1.55.
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Figure 2: On the left, we plot the parallel intensity /| (dashed line) and the perpendicular intensity
I, (dotted line), and also the total intensity /| + I, in the case of the unmodified internal field
(thin solid line) and when Ez = 0 (thick solid line). On the right, we plot P = (I, —I})/(IL + I))
in the case of the unmodified internal field (thin solid line) and when Ez = 0 (thick solid line). The
upper plots are for ¢/a = 1/1.4, and the lower plots are for ¢/a = 1.4. The size parameter is x = 4
and the refractive index is m = 1.55.

2 Discrete-dipole simulations

We use a fixed orientation with the incident wave propagating along the symmetry axis for the
spheroids in order to study how the internal electric field is changed when deviating from the
spherical shape. We consider aspect ratios ¢/a = 1.05, 1.1, 1.2, 1.4, 1/1.05, 1/1.1, 1/1.2, and 1/1.4,
where c is the vertical axis, and a is the horizontal axis. We define size parameter © = ka, where
k is the wavenumber, and consider x = 4 and 8. Refractive index m = 1.55. These parameters are
chosen to be consistent with those in our previous studies.

The internal fields are obtained from the ADDA [5]. Two incident polarizations of the incident
electromagnetic wave, one along the X-axis and the other along the Y-axis, are used both propa-
gating along the positive Z-axis. Because of rotational symmetry and fixed orientation, only one
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scattering plane, the Y Z-plane, is used in the DDA computations. The size parameter grid for the
internal field is Az ~ 0.25. A computational grid of 323 dipoles was used in the simulations for
x =4, and a grid of 643 dipoles for = = 8.

3 Results and discussion

In Figs. 1a and 1b, we plot the longitudinal component in the Y Z-plane when the incident wave
is Y-polarized and propagating in the positive Z-direction, for an oblate (¢/a = 1/1.4) and prolate
(¢/a = 1.4) spheroid, respectively. The size parameter is x = 4 and the refractive index is m = 1.55.
The two maxima near the forward portion of the particle are clearly visible in both spheroids and
separated by a distance nearly half a wavelength (Ax ~ 3) similar to spherical particles. These
dominating maxima seem to be common to all the particles we have studied so far.

In Figs. 1c and 1d, the transverse electric-field component is plotted in the X Z-plane, and in
Figs. 1e and 1f, in the Y Z-plane for the same spheroids. For the prolate spheroid, the maxima and
minima of the internal field are almost aligned along the propagation direction like a wavefront.
There seems to be only some difference between the planes at the back part of the particle (Figs.
le and 1f). For the oblate spheroid, the internal field is distinctively more different between the
planes (Figs. 1c and le). There are two pairs of maxima separated roughly by half a wavelength,
which tend to interfere constructively near the backward-scattering direction.

The parallel intensity I, the perpendicular intensity I, the total intensity I + I, and the
degree of linear polarization P = (I, — I)/(IL + ) are plotted in Figs. 2a and 2b for c¢/a =
1/1.4 and in Figs. 2c and 2d for ¢/a = 1.4. We show both the cases where the internal field
is unmodified and when the longitudinal component is omitted. As can be seen, when omitting
the longitudinal component, the negative polarization becomes totally positive in the mid-range
scattering angles, but remains negative near the backward-scattering direction. The strong NPB
for the oblate spheroid can be understood by the regular structure of the maxima in Fig. 1c. For
the prolate spheroid, the NPB is weaker. It should be noted that the spheroids with sizes x = 8
also have very weak NPBs, especially when compared to spherical particles. This was also shown
by Xie et al. [6].
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A problem of light scattering by the random inhomogeneities in a layered media with large regular structure
scale has been considered. The main attention has been paid to the influence of the wave turning points presence
on the scattering phenomena in these systems. Our approach for normal waves and Green function calculation
is based on the use of WKB-approximation far from turning points and Airy functions near them. For scattered
intensity calculation we suggest the original extension of classical Kirchhoff method for the case of volume scat-
tering and we get the expression for the scattered intensity in the far zone which takes into account the turning
effect of the incident and scattered beams. Physical aspects of the results obtained have been analysed. It has
been shown in particular that even a comparatively low permittivity gradient causes the noticeable redistribution
of the scattered intensity between front and back hemispheres. The resulting scattering indicatrix has rather an
exotic shape with sharp peaks, steps and dips with the magnitude comparable to the average intensity value.

I. INTRODUCTION

Most media with a smooth varying permittivity coefficient have random inhomogeneities of different origin causing
light scattering. In this paper we consider the problem of wave scattering in a smooth layered media with large regular
structure scale which significantly exceeds the wavelength. These systems have characteristic properties such as turning-
point presence also as forbidden zones [1-3, 5, 6]. Wave fields near turning points are interrogated in layered media
with different permittivity distributions [2, 4, 7]. More complex anisotropic systems like HLC are discussed in [8, 9]
with the related forbidden zone tunneling effect [10-13]. Wave tunneling effect is especially noticeable in thin gradient
films where it defines reflection and transmission coefficients according to the angle of incidence [11-13]. In this work
we will investigate the influence of wave turning effect and the turning point neighborhood on the scattering phenomena
that was not studied before. Using WKB-approximation for incident and scattered fields far from turning points and
Airy-functions near them we find normal waves in the medium to construct general expression for the Green function
in (q, z)-representation. We are using the approach based on the Kirchhoff method provides explicit expressions for the
single scattering intensity in the far zone [14-16].

II. BASIC EQUATIONS

To get rid of extra mathematical complication that is not of the fundamental nature we will consider all fields as scalars.
Introducing scalar monochromatic wave u(r,t) = u(r) exp(—iwt) where w is the circular frequency we are to solve the
Helmholtz equation for the amplitude u(r):

[A + 2 (r)]u(r) = 0, 2.1)
where k?(r) = (w/c)?e(r), c — electromagnetic constant and £(r) — permittivity:
e(r) = eo(2) + de(r), eo(2) = (e(r)),

here €g(z) is the mean permittivity of the medium changing along Oz axis, é¢(r) are random permittivity fluctuations,
(0e(r)) = 0. Let us consider the Helmoltz equation in the equivalent integral form:

u(ry,z) = up(ry,z) — ki /TO(I'J_ — ' ;2,2)0e(x’ 2 )u(r! , 2)dr! A7, 2.2)
Vic

where kg = w/¢, Vi — scattering volume, r; = (x,y) is r component orthogonal to Oz axis, ug is the solution of the
following non-disturbed wave equation:

Aug(ry,z) + l<:2(z)u0(117 z) =0, k‘2(z) = k:gso(z), 2.3)

function Tp(r | — 1’| ; 21, 22) used in (2.2) is the Green function of the equation (2.3). The resulting solution for ug in the
regions I, IT and III (see fig. 1a) is:
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Ajetts + (By —iAp)e W=
f(2)
plo [(2141@*”/4 +iB1) x Ai(po(z — z)) + Bre™ ™4 Bi(po(z — zt))} , zell
(A1 +1iBy/2)e"?t= + Bye™ it
f(z)

, z el

up(rr,z) = exp(ikiri)x

: 2 e 11,

(2.4)

where f(z) = f(ki,z) = \/k*(z) — k3, zx = z(ky) is wave turning point corresponding to f(z;) = 0, p§ =
- 0f? (z)/az|z:%, A1, By are arbitrary constants, ¢, = ¢i.(2, k1) = f(2")dz'. We also use the notation k(z) =

Zt
(k1,k.(%)). To get the expression for Tp(r, — 1/, ; 21, z2) we use (2.4) to construct two waves v and u_ propagating
respectively to 400 and —oo:

(f(2) 72 {9 —ie7=} 2z e

uy(q, z) = 2e~i7/4 pi Ai(po(z —2)), z€ell (2.5)
V po
(f(z)) "1/ 2e"e, 2 eIl
(f(z)) 1 2emioes, zel,
u_(q,z) = e /4, /pl [i Ai(po(z — 2¢)) + Bi(po(z — 2¢))], 2z €11, (2.6)
0
(f(2))72 (ie'?= J2 4 e70r2) z €111,

Using (2.5) and (2.6) we get the expression for the Green function Ty (q; 2, 21):

TO(q; Z, Zl) = (i/2)u+ (Q7 Zmax)uf (qa Zmin)a 2.7

where zmax = max(z,21), Zmin = min(z, z1). From (2.4) and (2.7) using the Kirchhoff method we get the expression
for the scattered intensity 71> (k@ k(®)):

4 s
kg K )k(i)k(s)Q

19 (kK = 1081 g kO

(s) 2
x |us (K, £L/2)

L/2 .

X // ) u;(kf),zl)u;(kf),zg)G(kf) _kY);Zl,ZQ)
—LJ2

X u+(k5f), z1)uly (kg_i), 29)dz1dze, (2.8)

here I, and I_ correspond to the scattering in the front (z > L/2) and back (z < L/2) hemispheres respectively, k(%)(*)

are wave vectors of the incident and scattered waves, (9 = J0|E((,i) |2k(i) is the incident field intensity, S| — the lateral
surface area of the slab and G is the correlation function:

Gk — k520, 29) = ST (02" () — k210K — Kk 2)) 2.9)

The general expression (2.8) is used to find scattering intensity for different situations depending on the presence of

the turning points of incident and scattered waves also as on the width of the turning point neighborhood compared to the
slab width.

III. RESULTS

To illustrate the results obtained let use the linear model of the permittivity and the Gaussian for the correlation function:

e(z) =ep — Aez/L, 3.1

G(Q;2) = G(Q) = Goexp (—Q*r2/2), (3.2)
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Figure 1: (a) — ray trajectories inside the slab —L/2 < z < L/2, 1 — without turning points, 2 — with turning point z = z;;
WKB-based solutions are used in I and III regions, Airy functions are used in II; (b) — scattering geometry, W — angle of incidence,
6 — angle of scattering wave output direction, 0. — angle of scattering.

5

Figure 2: Scattering indicatrix for the gradient media with Ae = 0.05 and anisotropic diffusers, kre = 1. (a), (b), (c) — 2-D profile
in the (N, k¥) plane with ) near the turning angle 6; = 79.57°: (a) — the incident wave has no turning points, §) = 77.4°, (b),
(¢) — the incident wave has turning point, #) = 80.2° 9() = 85.3° respectively, @ = 0; — 7/2, 3 = /2 — 0. Dashed line —
homogenous medium. O X axis is chosen in the line of k®. (d) — 3-D side view, ¢ = 28.7°.

where L is the slab width, g — permittivity in the slab center (z = 0), Ae — total variation of ¢ inside the slab, r., —
correlation radius, Gy = const. The scattering geometry is shown on fig. 1b. The resulting indicatrix is shown on fig. 2.

Scattering indicatrix in the layered medium even with low permittivity gradient has a complex form compared to
the homogeneous medium with the same scatterer type. It has sharp steps in the back hemisphere with the amplitude
comparable to the average intensity value. After the incidence angle reaches given boundary value 6, the scattering
indicatrix has extra narrow peaks with the amplitude several times greater than the mean value. Near directions orthogonal
to the to the layer normal the intensity falls off very quickly in several orders of magnitude. One can observe general
intensity attenuation in the front hemisphere according to its augmentation in the back hemisphere. The permittivity
gradient in the anisotropic medium causes also additional changes in the total scattering cross-section.

The effects listed above are of the geometrical-optics origin. The divergence from the geometrical optics and the use
of Airy functions is essential for the very thin slabs (L ~ 1075 — 10~% cm). Also we have to use Airy functions in the
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neighborhood of the intensity steps (6" = 6,, 06) = 1 — 6y), peaks () = 7 — 6@y and dips O = 7/2) for the
arbitrary slab thickness. But in that case the divergence from the geomtrical-optics results become apparent in a very short
angle intervals (A ~ 0.005° — 0.05° for the steps, Af ~ 0.001° — 0.1° for the peaks and A ~ 0.2° — 2° for the dips).
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Abstract

We present a new exact method for solving the problem of light scattering by an
isolated multilayered non-spherical (axisymmetric) particle. The method is based
on the separation of variables approach using the single field expansions in terms
of spherical functions. We divide the fields in two parts and utilise special scalar
potentials for each of them. The main feature of the method is that the dimension
of systems of equations arisen does not increase with a growth of the number of the
layers. Numerical results obtained for spheroids and Chebyshev particles show that
the suggested method is stable for particles with 4 and more layers in which case
the extended boundary condition method is known to fail.

1 Introduction

Various natural particles studied in atmosphere physics, astrophysics, biophysics, etc. are nonspher-
ical and inhomogeneous (see, e.g., [1]). The optical methods are often most suitable for investigation
of the media containing such particles. The methods are based on mathematical simulations of light
scattering by simplified particle models. So far, only the model of scatterers with randomly dis-
tributed inclusions was sufficiently developed for wide applications. An alternative simple model of
scatterer structure is multilayered particles.

Light scattering by such particles can be modeled with many methods. The universal ones
(DDA, FDTD, etc. — see about these and other methods mentioned here in the review [1]) being
very computational time-consuming are hardly applicable when the number of layers n is large.
Another rather approximate method GMT [4] is much more perspective, but we have not found
any results for n > 1. Among the exact methods (SVM, EBCM, etc.) one should start with the
EBCM. The pioneer work on light scattering by layered particles [5] was rather theoretical. Further
development of the method (see [6] for a review) has shown that it does not give reliable results
already for n > 3 [7]. The SVM was applied so far only to spheroids with confocal layers [8, 9]
which are particles of peculiar structure.

In this paper a version of the SVM applicable to any axisymmetric multilayered scatterers is
developed. We use nonstandard (non-Debay) scalar potentials of the fields and expand them in
the corresponding spherical functions. Some advantages of the suggested computational scheme are
discussed and first numerical results are presented.

2 Theoretical Approach

Let us consider scattering of a plane wave by an isolated particle with n layers (Fig. 1). We
take particles with axisymmetric layers, i.e. in the spherical coordinate system (r,0, ) the layer
external surfaces S; are defined by equations r = r;(), i = 1,...,n. E% and H® are the electric
and magnetic fields inside the (i — 1)th layer.
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Figure 1: Cross-section of a layered particle and the notations used.

The fields E® H(Z can be represented as sums EY) = Egi) + Eg), H = H{li) + Hg), 1=
1,...,n+1, where Elz), Hg are regular at the coordinate origin and Eg), H{Qi) satisfy the radiation
condition at infinity. The fields E11 , H<1 and Egl), Hgl) correspond to the incident and scattered
radiation, respectively. E"Jr1 H(n+1 = 0.

To solve the light scattering problem one needs to find the scattered field from the Maxwell
equations and the boundary conditions describing continuity of the tangential components of the
fields at the scatterer boundary.

For axisymmetric scatterers, we represent all fields by sums

s

E)=E), +EY, HY=H" +H', 1=1..n s=12 (1)

where E )A, H< ) do not depend on the azimuthal angle ¢ and averaging of Ei N’ H" )N over this
angle gives zero. The light scattering problem can be solved independently for these parts of the
fields [2].
To find ES)A, HS)A we utilise the scalar potentials
Ps = ngkwcose, qs = Hs(i)AcpcosH, I=1,...,n, s=1,2, (2)
where Eé A o HS( .A . are the p-components of the fields.
These potentlals satisfy the scalar Helmholtz equation and can be expanded in terms of the
spherical functions (i =1,...,n+ 1)
M o 40 IO
‘ 1
z(li) = Z b(li’)l j1(kir) P (cos 6) cos ¢, p%i) = ( ) h( )(k )P (cosf) cosp,  (3)
1 1

=1 21,1 ey =1 b2,l

where j;(k;r) and hl(l) (kir) are the spherical Bessel functions and the first kind Hankel functions,
respectively, Pll (cos ) are the Legendre functions of the first kind.

Using the boundary conditions in the usual form and the potential expansions (3) we get an
infinite system of linear equations relative to the expansion coefficients, e.g. for TM mode of the
incident wave polarization

A (k) Aé%») (b“)) (A%Rw Aé?><kz-+1>) (b?ﬁ*?) il

Bi (k) BY(k)) \by') — \CY (ki) CF(kivn)) \ b5 n
(
1

l-m)) (b%’”) _ (B " (k1)
k) ) \ 05" '™ (kpg)
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Figure 2: The dependence of accuracy measure § on the number of terms kept in the field expansions
N for 1-, 2-, 3- and 5-layered spheroids with the aspect ratios a;/b; = 1.5 and the size parameter
xzy,1 = 1. The incident radiation angle ov = 45°.

Here bgi) are the infinite vectors containing expansion coeflicients of the potentials qgi) The ele-
(i) )

ments of the infinite matrices A;”, Bs”, C( D are integrals of radial and angular functions and their
derivatives, for example

Agl;)ln :/0 j1(kir) P} (cos 0) P (cos 0) sin 0df. (5)

Starting with the last equation, sequential elimination of the expansion coefficients can be done

ich gives (p1) p1) = T p(n+1)
for all layers except for the first and (n+1)th ones, which gives ( b’ b = (Q1 QQ) by " As
(1)

the expansion coefficients of the incident Wave potentials b

coefficients for the scattered radiation b = Q2Q7 1b(1)

In calculations truncated systems of equations are used as only N terms can be kept in the
scalar potentials expansions. In the described approach the matrices Q, Q2 are computed using an
iterative scheme where at each step a system N x N is solved. This approach is more robust to an
increase of the layer number than solving of one (nN) x (nN) system occurred in known schemes.

To find the fields Egi)N, HgiN we use the scalar potentials Us(i), Vs(i), e.g. for the TM mode

are known one can find the unknown

B = -

i kov XV x (U045 + vIOr), B =V x (U4 + vir) (6)

These potentials satisfy the scalar Helmholtz equation and can be expanded in terms of the spherical
functions (i =1,...,n+1)

(4) 0 (i) i co oo (i)

U a; U. m

Vl(z') = E E b(z) Ji(kir) P (cos 6) cos mp, V2(i) = E E 2 ! k: (kir)P™ (cosmb) cos .
1 m=1l=m ~1,ml 2 m=1l=m 2 ml

(7)
For each m we get infinite systems of linear equations relative to the potentials expansion
coefficients. These systems are solved in a similar manner as above.

3 Numerical Results

We have implemented the described approach in a FORTRANTY7 code. It was tested for multilayered
spheroids and Chebyshev particles of different sizes and shapes by comparison with results obtained
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when possible with a code based on the EBCM method [6]. Accuracy of the codes was analysed
by using a relative difference of the scattering and extinction cross sections calculated for non-
absorbing particles § = |Csca — Cext|/(Csca + Cext)- Typical dependence of accuracy of the methods
under consideration on the number of terms kept in the expansions N is shown in Fig. 2.

For homogeneous spheroids, the EBCM is known to be more effective than the SVM when
the spherical functions are applied [3] because the former converges more quickly (see the solid
lines on Fig. 2). However, when we increase the number of the particle layers (see the long dashed
and dashed lines for 2 and 3 layers) the speed of EBCM convergence falls and accuracy of results
becomes ~ 1078-1077. The trend of SVM convergence is the same for layered and homogeneous
spheroids. The best accuracy achieved with the SVM for spheroids with 2 and 3 layers is ~ 10710
that provides 7-8 correct digits in the results. When the number of layers is relatively large, e.g. 5
or more (see the dotted lines in Fig. 2), the SVM still well converges and gives the same accuracy as
for 2 or 3 layers, while EBCM accuracy drops to ~ 107> that gives only 2-3 correct digits. Similar
results were obtained for layered Chebyshev particles. More numerical examples will be presented
at the conference.
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Abstract

We compared three formulations of the discrete dipole approximation (DDA) for
simulation of light scattering by particles with refractive indices m=10 + 10i,
0.1+i, and 1.6+ 0.01i. These formulations include filtered coupled dipoles
(FCD), lattice dispersion relation (LDR) and radiative reaction correction (RRC).
We compared number of iterations (proportional to simulation time) and accuracy
of final results. We showed that LDR performance for m = 10 + 10i is especially
bad, while FCD, which we have implemented in the ADDA computer code, is a
good option for all cases studied. Now these extreme refractive indices can be
routinely simulated using modern desktop computers.

1 Introduction

The discrete dipole approximation (DDA) is a well-known method to calculate light scattering by arbitrary
shaped inhomogeneous particles [1]. The widespread application of the DDA started with the work of
Draine and coworkers [2-4], especially after release of their computer code DDSCAT to the public
domain. They also systematically showed that DDA performance deteriorates with increasing refractive
index m. Since then it was accepted that application of DDA is limited to a range approximately described
as [m - 1| < 2, based on the standard formulation of the DDA including the lattice dispersion relation (LDR
[4]). Recently, it has been shown that this standard DDA formulation has problems both for |m| > 1 and
Re(m) < 1 [5]. Such extreme m-values do appear in spectral resonances of many materials in the
infrared range [5]. Accurate predictions of the spectral shape of absorption resonances are of crucial
importance for the interpretation of astronomical observations. Moreover, metallic particles in the infrared
have very large values of m, hence they might be the dominant source of opacity in many environments
[6]. However, currently accurate methods to predict the opacity of metallic particles are lacking.

While the range of Re(m) < 1 is poorly studied, there have been a number of attempts to improve DDA
performance for large m. They include filtered coupled dipoles (FCD [7]), weighted discretization (WD [8]),
integration of Green’s tensor (IT [9]), Rahmani-Chaumet-Bryant formulation (RCB [10]), and surface-
corrected LDR (SCLDR [11]). RCB and SCLDR require a preliminary solution of the electrostatic problem
for the same particle, and IT requires a numerical evaluation of oscillatory integrals to build up the DDA
interaction matrix, which is not trivial to implement and may consume a lot of computer time. WD is an
efficient in decreasing shape errors [12] but it causes all boundary dipoles to have different
polarizabilities, which is incompatible with current internal data structure of publicly available DDA codes
such as DDSCAT and ADDA [13]. The only known drawback of FCD is that it is hard to theoretically
analyze its convergence [12]. On the other hand, FCD is a good option since it is easy to implement and it
does improve the performance of DDA for large m, as was shown by its authors [7,14]. It seems that the
only reason why FCD, proposed 10 years ago, was not adopted by the light scattering community is that
it was not included as an option in a publicly available DDA code.

In this paper we endeavor to revive FCD. For that we implement it in the ADDA code and demonstrate
its performance for a number of scattering problems in comparison with LDR and radiative reaction
correction (RRC [2]) formulations. We also discuss practical feasibility of DDA simulation of light
scattering by particles with extreme refractive indices.

2 Methods

FCD is based on application of the sampling theorem to the volume integral equation for the electric field
[7], and it effectively modifies the formula for calculation of interaction terms (i.e. off-diagonal terms of the
interaction matrix). The new formula requires calculation of sine and cosine integrals, which takes some
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time. However, according to our experience, this time is comparable to one iteration of the iterative solver
and hence can be neglected in most cases (data not shown). The dipole polarizabilities (i.e. diagonal
terms of the interaction matrix) are those of Clausius-Mossotti (CM) with O((kd)?) corrections [7].

We have implemented FCD in ADDA and used it (v.0.78.2) for all simulations presented in this paper.
We tried two extreme refractive indices (10 + 10i and 0.1 + i, typical for SiC in the infrared [5]) and one
moderate one (1.6 + 0.01i, typical for silicates in the visible). Three particle shapes were used: a sphere,
a cube, and a cubical discretization of a Gaussian random field particle (GRF [15]) using 100 cubes,
located on a 8x8x8 grid. We used two different sizes: kD, = 8 (“large”) and kD, = 107° (Rayleigh regime),
where k is the wavenumber and D, is the particle length along the x-axis. For both cases orientation of the
particle was fixed. We used FCD, LDR, and RRC formulations for large particles. For the Rayleigh
particles LDR and RRC are both equivalent to CM — so only FCD and CM were used. For all simulations
we used the QMR iterative solver [13]. However, we also tried BiCGStab in a few cases (see below). The
default threshold of the iterative solver was used (107°).

For each combination of shape, size, and refractive index we used 18 different discretizations from 8
to 512 dipoles (n,) per D, with approximately uniform spacing on a logarithmic scale. For large and
Rayleigh particles we use y = kd|m| and 1/n, as discretization parameters respectively. All simulations
were run on Dutch compute cluster LISA (http://www.sara.nl/userinfo/lisa/description/). Since only the
sphere allows for exact analytical solution, we used the extrapolation technique [16] to infer reference
results for the cube and the GRF particle. Using error estimates provided by the extrapolation technique
for all formulations applied to the same particle and assuming these errors to be independent, we
computed a weighted average and corrected error estimates for each formulation. For spheres we also
performed extrapolation to compare its accuracy relative to the exact Mie results.

3 Results and discussion

First we analyze the total number of iterations (Ni) performed by ADDA, which determine the total
simulation time. For Rayleigh particles FCD is faster than CM for both extreme refractive indices, while
Nier is only weakly dependent on the discretization (see Fig. 1 for example). Results of N, for the best
discretization (n, = 512) are summarized in Table 1: FCD is about 6 and 1.2 times faster for m =10 + 10i
and 0.1 + i respectively. For large particles with any of the considered m, as well as for Rayleigh particles
with m=1.6 + 0.01i, all formulations show very similar Ny, almost independent on y, except for the
following. (1) For m =10 + 10i LDR shows strange dependence of Ny on y for all studied shapes (see
Fig. 2 for example). This can be explained by the nature of LDR formulation, which employs corrections of
order y2 When y is not small this correction may be large and wrong, so that it not only decreases the
accuracy of simulations (see below) but also strongly increases the condition number of the interaction
matrix. This is not so noticeable for very coarse discretizations due to the small dimension of interaction
matrix, but become prominent for y ~ 1. Other formulations employ corrections given in powers of kd,
which is much smaller than y for this m. (2) QMR fails for very fine discretizations of cubes for both RRC
and LDR and for both extreme refractive indices (data not shown). However, BiCGStab does converges
for these cases showing similar N, for all formulations (except for LDR in combination with m = 10 + 10i).

Due to the space limitations we can not present all the accuracy results in this contribution, and show
only a few representative examples. Table 2 summarizes relative errors of absorption efficiency Qgps for
all studied cubes, showing errors of different formulations for the best discretization, estimate of the
extrapolation error (using the 5 best discretizations), and the corrected estimate of this error. One can see
that for cubes with m =10 + 10i FCD is superior (1-2 orders of magnitude) to other formulations, although
for Rayleigh cubes CM yields similar accuracy after extrapolation. For cubes with m=0.1 +i FCD is 60
times more accurate than CM in the Rayleigh regime and shows similar accuracy for kD, = 8, but is less
accurate after extrapolation. The most surprising result is for “very moderate” m=1.6 + 0.01i. FCD is
more than 10 times more accurate than both LDR and RRC for cubes, although after extrapolation the
accuracies are similar. Such behavior has never been reported for FCD because, to the best of our
knowledge, it has never been systematically applied to cubically shaped particles (i.e. those without
shape errors [16]). Accuracy results for GRF, simulated only for m = 10 + 10i (data not shown), are similar
to the cube results for the same m.

For spheres there is generally a relatively small difference between the accuracies of different DDA
formulations, while extrapolation results for FCD have the same or worse accuracy than others (data not
shown). There is only one exception, shown in Fig. 3, a large sphere with m =10 + 10i. This figure also
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superior for n, =512 it is also superior for almost depict errors of extrapolated values (using 9 best
the whole studied range of FCD, although its discretizations) compared to the Mie solution.
superiority for smaller n, may be smaller, since

FCD seems to have a larger exponent in the power dependence of errors on y. The inability of FCD to
improve accuracy for spheres in general is probably because shape errors, to which FCD is susceptible to
the same extent, contribute most to the total errors for the studied sizes and refractive indices. Further
study is required to check this hypothesis. Accuracies of extinction efficiency and angle-resolved S;; and
-S,1/S11 show the same trends as that of Qs (data not shown).

It should be noted that in some cases FCD convergence is oscillatory around the linear trend in log-log
scale (data not shown), which explains relatively large errors during extrapolation of its results. However,
currently there exists no easy-to-use and robust implementation of DDA extrapolation technique for
arbitrary particles, i.e. performance of the extrapolation should first be tested on a class of similar
problems, using some reference results. Therefore, for practical applications good accuracy of single
DDA simulations seem to be more important than good potential for extrapolation.

FCD makes extreme refractive indices much more feasible for DDA simulations, but they still require
extreme computer power. We do not present computational times in this paper, but only give a few
guiding values. Requiring moderate accuracy of 10% in Qs (Which is considered sufficient e.g. for
computing an absorption spectrum of astrophysical dust), a single DDA simulation will fit into 2 GB of
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memory and will take about 10 and 2 hours on 3 GHz single-core processor for single orientation of
wavelength-sized particles with refractive index 10 + 10i and 0.1 + i respectively. However, required time
can be as small as a few minutes for Rayleigh or cubically shaped particles.

3 Conclusion

We have compared three DDA formulations: FCD, LDR, and RRC for simulations of light scattering by
cubes, spheres, and GRF with sizes comparable and much smaller than the wavelength, using three
refractive indices: 10 + 10i, 0.1 +1i, and 1.6 + 0.01i. FCD improves convergence of the iterative solver for
Rayleigh particles and extreme refractive indices: it is about 6 and 1.2 times faster than CM for
m=10+10i and 0.1 +i respectively. FCD significantly decreases discretization errors of the DDA
compared to other formulations almost for all studied cases, including moderate value of m. This is clearly
visible for cubes and GRF, since their results are not obscured by the presence of large shape errors.
The improvement of accuracy is up to a factor 100. The only drawback of FCD is that in some cases the
extrapolation technique applied to its results leads to larger errors than for other formulations. If
comparing LDR and RRC, our results show that LDR is a “never use” option for m = 10 + 10i, comparable
to RRC (and generally to FCD) for m=0.1 + 1, and better than RRC for 1.6 + 0.01i (the latter is well-
known in the literature).

FCD has been implemented in the publicly available code ADDA and is ready to be applied by the light
scattering community. Although further comparative studies are definitely required, FCD is at least a very
good candidate to become a default DDA formulation for day-to-day simulations. Extreme refractive
indices, such as considered in this paper, can be routinely (although not quickly) simulated using modern
desktop computers.
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Abstract

We study intensity and polarization of radiation scattered by fluffy aggregates. Model is
porous pseudosphere with small size (Rayleigh) inclusions and inclusions of different sizes.
The calculations are carried out using the discrete dipole approximation (DDA) code for
several materials with complex refractive indices ranging from 1.20 + 0.00i to 1.75 + 0.58i.
The results are compared with the predictions of the Lorenz-Mie theory with a refractive
index found from the effective medium theory based on the Bruggeman rule and the ex-
tended Mie theory for n-layered spheres. It is found that the scattering characteristics of
particles with small inclusions are described by the Bruggeman—Mie theory quite well (de-
viations usually do not exceed ~ 5 — 15%). For particles with inclusions of different sizes
the satisfactory agreement between n-layered spheres and DDA computations is obtained
for small and intermediate porosity.

1 Introduction

Finding the optical properties of fluffy aggregate particles is an important task for different fields of science
and industry. Such particles are generally assumed to be constituents of interstellar clouds, circumstellar and
protoplanetary disks, various suspensions, etc. Because the numerical methods developed for the aggregate
optics calculations are rather computationally expensive, we develop “effective” models where complex
particle is replaced by a simple model with similar optical properties. In papers [1] and [2] it was shown that
the extinction efficiencies and other integral scattering characteristics of porous pseudospheres with small
size (Rayleigh) inclusions can be well described using Lorenz-Mie theory and a refractive index found
from the Bruggeman mixing rule of the effective medium theory (EMT). At the same time, the extinction
of heterogeneous particles having inclusions of various sizes (Rayleigh and non-Rayleigh) are found to
resemble those of spheres with a large number (2 15 — 20) of different layers [1].

Here, we study angular scattering properties of particles consisting of vacuum and some material. As
earlier [2], five refractive indices of materials corresponding to biological, atmospheric and cosmic particles
were selected. Previous analysis of applications of different mixing rules was mainly focused on extinction
efficiencies (see Refs. [3], [4] and references therein). Only a couple times intensity and polarization of
scattered radiation calculated using some EMT mixing rule compared with the results of microwave analog
experiments [5] and the results of DDA calculations [6] and [7].

2 Models and calculations

We consider spherical particles consisting of some amount of a material and some amount of vacuum. The
amount of vacuum characterizes the particle porosity £ (0 < # < 1), which is introduced as

P = Vvac/ Viotal = 1- Vsolid/ Viotals

where Vi, and Vojig are the volume fractions of vacuum and solid material, respectively. If £ = 0 the
particle is homogeneous and compact. Fluffy particles also can be presented as homogeneous spheres of the
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same material mass with radius rporous and a refractive index found using an EMT. The size parameter of
porous particles can be found as

2nr, porous  Xcompact Xcompact

A (A=-PB (Viiia/ Vier)/?’

Xporous =

where A is the wavelength of incident radiation.

The optical properties of particles with inclusions are evaluated using program DDSCAT (version 6.0)
[8]. The particles (“targets” in the DDSCAT terminology) are reproduced by pseudospheres with inclusions
of a fixed size or with a given distribution of inclusions over their sizes (see [1] for details). Targets with
the values of djy¢ ranging from 1 to 9 are considered. The inclusions of the size dj,; = 1 are dipoles, while
the inclusions with di,; = 3,5,7 and 9 consist of 27, 125, 343 and 729 dipoles, respectively. Contrary to
previous calculations, the optical characteristics of pseudospheres with inclusions are averaged over 256
target orientations.

The effective models of aggregates includes the Lorenz-Mie calculations for homogeneous spheres with
refractive index found from Bruggeman mixing rule and calculations for n-layered spheres.

We consider non-polarized incident radiation and analyse the angular dependence of the intensity (ele-
ment S 11 of the Miiller scattering matrix) and linear polarization of scattered radiation (P = =S 12/S 11).

3 Results and discussion

Computations were performed for fluffy particles with size parameters xcompact = 1,3, and 10 and porosity
P =0.33, 0.5 and 0.9. The refractive indices of compact particles are chosen to be mcompact = 1.20 + 0.00i,
Meompact = 1.33 + 0.01, mcompact = 1.68 + 0.037, mcompact = 1.98 + 0.234, and mcompact = 1.75 + 0.58i. These
values are typical of refractive indices of biological particles, dirty ice, silicate, amorphous carbon and soot
in the visual part of the spectrum, respectively. The effective refractive indices calculated using Bruggeman
mixing rule are given in Table 3 in [2].

Some results for aggregates with Rayleigh inclusions are shown in Figs. 1 and 2. It is seen that satis-
factory agreement between the effective model and DDA computations is obtained for almost all scattering
angles excluding deep minima. As usual, the agreement improves for particles with smaller size parame-
ters, smaller values of refractive index and smaller porosity. If we are restricted to porosity # = 0.33, the
deviations in calculated intensity do not exceed ~ 5%, ~ 15% and ~ 25% for Xcompact = 1,3, and 10, respec-
tively. For very porous particles (right panels in Figs. 1 and 2) the difference between the effective model
and DDA computations becomes rather large for scattering angles ® 2 100° (for xcompact = 10 this occurs
for ® 2 60°) This is not unexpected, since diffraction plays a major role for small scattering angles, and
this depends primarily on the external morphology of the particle. At larger scattering angles, the internal
composition plays a larger role.

Figure 3 illustrates the behaviour of angular scattered characteristics for aggregates with Rayleigh and
non-Rayleigh inclusions. More or less similar behaviour of intensity and polarization takes place for porosity
P = 0.33 only. For £ = 0.9 the model of n-layered spheres gives satisfactory agreement only in the case
of forward intensity and backscattering polarization. However, we expect that the deviations decrease after
the averaging over size distribution because in this case, the minima become washed out (see, for example,
discussion in [9]).
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Figure 1: Intensity and polarization of the scattered radiation calculated for pseudospheres with small in-
clusions (DDA computations) and effective models (Bruggeman—Mie computations). The refractive indices
of the inclusions are mcompace = 1.33 + 0.01i, the size parameter iS Xcompact = 3, the porosity of particles
P = 0.33 (left) and P = 0.9 (right).
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Figure 2: The same as in Fig. 1 but now for refractive index mcompact = 1.75 + 0.58i.
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Figure 3: Intensity and polarization of the scattered radiation calculated for pseudospheres with small and
large inclusions (DDA computations) and effective models (n-layered spheres). The refractive indices of the
inclusions are mcompact = 1.33 + 0.017, the size parameter is Xcompact = 3, the porosity of particles ¥ = 0.33

(left) and # = 0.9 (right).
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Abstract

We study the applicability of discrete-dipole approximation (DDA) to particles
consisting of conducting materials and find that at refractive index m=1.5+1.3i
DDA delivers results of reasonable accuracy over a wide range of particle sizes.

1 Introduction

The discrete-dipole approximation (DDA) is a powerful approach to compute light scattering by arbitrarily
shaped particles. It has no restrictions on shape or internal structure of a target. In the DDA the target is
replaced by a set of small volumes (cells) in a configuration that reproduces the original structure of the
scatterer. The DDA has certain shortcomings. Most obvious is that it is a numerical technique and
computationally intensive. The number of computations increases with size and refractive index. In order
to provide domination of the electric dipole moment over other multipoles induced on a constituent cell,
we have to decrease significantly the cell size. For instance, in the case of iron (m = 3 + 4i, at visible
wavelength), the reduction is of 3 times in comparison with ice (m = 1.313 + 0/) and organic material (m =
1.5+ 0.1)).

In this paper, we show that materials having a relatively small refractive index like m = 1.5 + 1.3i can
represent conducting material well in addition to having magnetic dipole and electric quadrupole moments
remaining relatively small compared to the electric dipole moment for small constituent volume X =
2nrf/) =~ 0.3, where A is the wavelength and r. is the radius of a sphere having a volume equivalent with
the single constituent cell. This ratio is almost the same as in the case of dielectric material at this size
parameter; thus, using refractive index of m = 1.5 + 1.3/, we can study general features of light scattering
by conductive particles over a wide range of sizes.

2 Discussion of results

Using own computer implementation of DDA [e.g., 1, 2], we consider light scattering by single spheres.
Spheres were generated in cubic lattice of 128 cells per side. We assume that sphere occupies only
fourth part of the largest volume, when its diameter is equal to side of lattice. Such an assumption was
made in order to set equal volume for sphere and agglomerated debris particles [1] generated in lattice of
the same size. The size parameter of initial matrix is x=30; whereas for the sphere x.,,=19.133. Note that,
the size parameter of single cell is x.=0.291, which is the largest value over all our previous studies
[e.g., 1, 2]. We expect that this case is difficult for DDA analysis.

We perform four different tests which prove that DDA can be applied at the refractive index m=1.5+1.3j
and size parameter of single cell as large as x.=0.291. We compare this case with that of m=1.5+0.05/
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because, at such refractive index, an angular profile of linear polarization of sphere consisting of cubic
cells at x.¢=0.291 reveals good agreement with exact result of Mie theory (xs,n=19.133).

2.1 Relative contribution of magnetic dipole and electric quadrupole moments

Using Lorenz-Mie theory, we compute electric dipole, magnetic dipole, and electric quadrupole moments
in the case of a single constituent cell. In the theory, these are represented, correspondingly, by
scattering coefficients a4, b1, and a, [3]. At X = 0.291 and m = 1.5 + 0.05/, |a4| = 0.004856, |b4| =
0.000058, and |a,| = 0.000023. Growth of the imaginary part of refractive index to Im(m)=1.3 changes
these coefficients to: |a;] = 0.014013, |b4] = 0.000178, and |a,| = 0.000061. One can see that increasing
the absorption amplifies all scattering coefficients by approximately the same factor of three. The
essential point is that the relative contributions of magnetic dipole and electric quadrupole moments
remain approximately the same: |b4|/|a;| = 0.012 and |ay|/|a4] =~ 0.0045. Thus, from general point of view, in
both cases the DDA delivers numerical result of the same accuracy. Note, that in the case of iron (m =3 +
4j) and x.o = 0.291, DDA definitely fails and the relative contribution of the magnetic dipole moment is five
times larger; whereas, the relative contribution of the electric quadrupole moment remains almost the
same.

Another way to verify the contribution of the magnetic dipole moment has been used by Draine [4]. He
considered the ratio of the magnetic dipole absorption to the electric dipole absorption

tos/ Cis = 00111+ (x ) (Re(e) +2)° +Im(e)*), (1)

where Re(g) and Im(g) are the real and imaginary parts of the dielectric permittivity. We compute this ratio
as well. At xgo = 0.291, the cases of m = 1.5 + 0.05/ and m = 1.5 + 1.3/ reveal similar values of the ratio
(1): 0.017 and 0.021, respectively. In the case of iron the ratio (1) is 0.565, i.e., about 30 times higher.
Summiarizing this section, we can state that the error in assuming just a dipole moment is approximately
the same for materials of m= 1.5+ 1.3iand m = 1.5 + 0.05i.

2.2 Satisfaction of Maxwell equations

In order to verify that the results obtained with the DDA satisfy Maxwell equations, we consider the
scattering cross-section Cs., calculated in two different ways. One of them is based on the Optical
theorem [3] that is used to compute the cross-sections of extinction C. and absorption C,,s. The
coefficient of extinction C.y results from interference of the incident electromagnetic wave with the
forward-scattered field, and the coefficient of absorption C,,s can be calculated directly from the field
induced on the dipoles. The scattering cross-section Cg, is the difference between the coefficients Cey
and Cgps.

The cross-section Cg, also can be computed by integrating the intensity of the scattered field over a
circumscribing sphere. This definition of Cy., takes into account mutual interference of waves scattered by
all dipoles to the observation point. Both methods for computation of Cg, reveal principal mathematical
distinctions, and most critically, these two methods can only be in agreement if the DDA algorithm
satisfies Maxwell equations; hence, a comparison is a test of whether the Maxwell equations were
satisfied. We compute the difference between Cg, obtained in these two different ways and found that for
the sphere of m = 1.5 + 0.05/ and Xspn = 19.133 (Xcei = 0.291), the difference is 10.603%; whereas, for the
same size sphere of m = 1.5 + 1.3/ a difference in Cs, of 10.575% is obtained. Thus, increasing Im(m)
from 0.05 to 1.3 has no influence on the satisfaction of Maxwell equations using this technique.

Another point to consider is the magnitude of the difference between the two values of Cs., as 10.5%
may be significant. By comparison, we study how much that difference might be in the case when
numerical result does not satisfy Maxwell equations. We consider a sphere of xgpn= 19.133 and m=1.5 +
1.3i. The total number of iterations required to achieve light-scattering properties at regular accuracy is
156, but we interrupted the process at the eleventh iteration and used the results of the first ten iterations
only. In this case, the difference in Cq, is more than a factor of ten.
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2.3 Distribution of energy of the induced field over the volume of the scatterer

Since values of the real and imaginary part of the refractive index m = 1.5 + 1.3/ are similar, the
material possesses conducting properties. We expect the energy to be concentrated near the particle
surface and, indeed, the ratio of the skin depth to wavenumber for this refractive index is 0.385; i.e., the
skin layer is thinner than the size of one constituent cell in the sphere at xs,n=19.133 [5].

Figure 1: Distribution of energy inside the sphere at xs,,=19.133 and m=1.5+1.3/ obtained with DDA.

In Fig. 1 we present results of DDA computations of the energy of the induced field in an xspn = 19.133,
m = 1.5+ 1.3i sphere. The total number of cells is 285,144 and their size parameter is x. = 0.291. On the
left portion of Fig. 1, the energy distribution over the sphere exterior is shown. White and blue lines
indicate the directions of propagation and the electric-field vector of the incident electromagnetic wave.
The energy distribution has been normalized, so, it varies from 0 to 1. The middle of Fig. 1 presents a
slice of the sphere, and on the right, we show the same slice omitting the dipoles whose induced-field
energy is less than 0.01. One can see that only the outermost dipoles appear in a saturated red color;
whereas, dipoles forming the next layer are already darker. The attenuation of energy between layers is
about 3 times or even higher. This is in good quantitative agreement with our estimation of skin depth.

2.4 Comparison with Lorenz-Mie theory

Comparison with Lorenz-Mie theory provides a method to check the accuracy of the DDA, but we must
remember there are two sources of error: violation of the Maxwell equations and an insufficient
approximation of the perfect sphere by the array of dipoles. Ascertainment of the real reason for the
difference between the DDA and Mie theory is not always trivial; nevertheless, we present results of such
a comparison in Fig. 2 for a sphere of x5, = 19.133. In the DDA simulation, the sphere is approximated by
285,144 dipoles whose x.¢ = 0.291. On the left in Fig. 2, at m = 1.5 + 0.05i, there is a strong resemblance
between the results of the DDA and Lorenz-Mie theory. Simultaneously, at m = 1.5 + 1.3/, the difference
between both approaches is quite significant (see right panel in Fig. 2). However, taking into account the
arguments mentioned in sections 2.1-2.3, we do not necessarily interpret that difference as a violation of
the Maxwell equations, but as a discretization error. First and foremost, we note that the skin depth is
smaller than the cell size. This means that the induced fields computed using the DDA are average
values over the cell volumes. In turn, the discretization roughness is visible to the electromagnetic field,
since both their spatial frequency components are comparable. This surface roughness increases the
contribution of the outer layers and reduces that of the particle interior. This is demonstrated also in the
right panel of Fig. 2, which shows the polarization response from a thin shell otherwise having the same
properties. In this case the interior cannot contribute to the scattering because there is none. DDA
simulations performed using smaller spheres show that the light scattering approaches that of Lorenz-Mie
theory as the resolution is further increased.
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Figure 2: Degree of linear polarization as function of phase angle produced by sphere at x5,,=19.133.

3. Conclusion

The DDA can be applied to the study of light scattering by irregularly shaped particles having relatively
high absorption, assuming a relatively small absolute value of refractive index |m| < 2. So long as the non-
electric-dipole contributions remain relatively small, the DDA allows us to consider particles as large as in
the case of optically soft particles (m = 1.313+0/). However, as the absorption increases the role of
surface roughness is enhanced, resulting in errors in describing particle shape. Such errors should be
considered especially for smooth particle systems like spheres and spheroids. When considering
naturally occurring irregularly shaped particles, this roughness must be incorporated into the particle
description. Note, that in many applications the surface roughness of irregularly shaped particles does not
cause any problems; it might be even desirable.
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