www.jenam2009.eu

### European Week of Astronomy and Space Science

**Registration now open** 

University*of* Hertfordshıre

### **UKIRT Planet Finder (UPF)**

### Hugh Jones, U. Herts



Science & Technology Facilities Council UK Astronomy Technology Centre



Based on successful concept design study for Gemini

Delivery less than 3 years from receipt of approval, 6 Feb submit SoI

### **Exoplanets around the majority** of stars (M dwarfs)?



### Astrophysically ... a void



### **Optical RVs are hardwork for M dwarfs**

Low mass planets are being discovered around M dwarfs but tough even with Keck



Gl876 (M4V), 4.7pc 1.9 day period Msini=7.5M<sub>Earth</sub> 1997-2005 Keck monitoring including data on 6 consecutive nights Rivera et al. 2005

# *Plenty of low-mass planets though at 5 Earth masses we are close to detection threshold*

# Low-mass planets dominate despite strong bias against detection







### Habitable zones more accessible

### \* The habitable zones of low-mass stars have shorter orbital periods

Habitable zone inside 0.3 AU for M dwarfs

Tidally locked planets may or may not be good places to look for life



### The potential in the infrared



### *RVs in IR and visible for LP944-20* (*nearby late-type M dwarf*)



Solid circles – HIRES (optical) Open circles – NIRSPEC (infrared)

Martin et al. 2007

## Technical challenges of RV in the NIR

- Simultaneous wavelength fiducial covering NIR is required for high precision RV spectroscopy
  - Suitable gas/gases for a NIR absorption cell
  - Use simultaneously exposed arcs (Th-Ar, Kr, Ne, Xe) and ultra-stable spectrograph
    - $\sim$  300 bright lines to monitor drift during observing (using super exposure and sub-array reads of arc lines)
    - ~ 1000 lines for PSF and wavelength calibration (daytime)
  - Use of a laser comb possible following R&D
- Significant telluric contamination in the NIR
  - Mask out ~ 30 km/s around telluric features deeper than 2%
  - At R=70,000 (14,000 ft, 2 mm PWV, 1.2 air-mass) this leaves 87% of Y, 34% of J, and 58% of H
  - Simulations indicate resulting 'telluric jitter' ~ 0.5 m/s

# **Atmospheric limits?**

Mauna Kea is best site to avoid tellurics



### **Radial velocity information**



### **UPF** Design Baseline Concept

Cross dispersed echelle spectrograph
White pupil collimator design
Refractive camera
Optical design similar to HARPS, UVES, MRS spectrographs
Fixed echelle, cross disperser, camera

No mechanisms (in main optical path)

Floor mounted, fibre fed

### **UPF** Optical Layout



- # Input slit
  - **\*** 0.46 arcsec wide
  - 0.36 x 0.047mm effective size, f/5
- Focal reducer
  - **\*** Convert from f/5 to f/12.5
- Single collimator
  - Off axis parabola, f=1000mm, 340 x 260 mm
  - **\*** 80mm collimated beam diameter
- Spectrum mirror
  - **\*** Flat, 250 x 6 mm

- Echelle
- 31.6 lines/mm, R4 (75° blaze angle)
  - 320 x 100mm
  - Cross disperser
- Reflective grating, 100 lines/mm, m=1
  - 110 x 90mm
  - Camera
  - f=400mm, f/5
  - Detector
  - 2 x 2K<sup>2</sup> HAWAII-2RG arrays

### **UPF** Spectral Format



Detector array footprint 2 x 2K<sup>2</sup> HAWAII-2RG arrays 73.728 x 36.864mm

### WFCAM Mounted Fibre Pickoff



- Fibre pickoff and acquisition system mounted behind WFCAM field lens and guider optics
- **Guide camera rigidly mounted to fibre pickoff to minimise guider error**
- Second fibre from calibration source, coupled into object fibre via mirror mechanism, for daytime calibration

### Simulations

# \*Outputs: \*2-D image \*1-D photon, error, S/N spectra



### Analysis of simulated M dwarfs

Analysis of simulated spectra
11 simulated spectra uniformly sampled in period (10 days)

M3V K1=10.0 m/s
M3V K1=5.0 m/s
M6V K1=5.0 m/s
Each spectrum:
0.98-1.10 um (Y band)
v sin i = 5 km/s

Scaled to J=9.0, Int. time=900 s

S/N~150, R=70,000
Telluric absorption, 0-100 m/s

`Telluric clean' regions of Y selected but no telluric mask

RESULTS (Y band only):
M3V - K1=9.7±0.8 m/s
M6V - K1=3.7±1.4 m/s
RV code agrees with independent Bouchy analysis
Effect of telluric jitter, ~0.5 m/s



## **Pathfinder - test bed for IR stability measurements on Sun**



# **Pathfinder - test bed for IR stability measurements**

### Solar spectrum plus ThAr in Y band (1.05um) at 50k resolution



### **Y- Band Spectra with ThAr lamp**



Red – observed, Green – telluric model, Blue – ThAr/10

# **Ongoing programme - different optical configurations**



# **Pathfinder RMS on Sun for different configurations**



Ramsey et al. 2008, PASP, 120, 887

# Instrument expectations

| Error source              | Contribution | Comment                                                               |  |
|---------------------------|--------------|-----------------------------------------------------------------------|--|
| Drift measurement with    | < 0.2 m/s    | ~ 300 arc lines typically > 60 s                                      |  |
| sim. arcs                 |              |                                                                       |  |
| Photon-weighted centre    | < 0.1 m/s    | In median sky conditions (1 m/s                                       |  |
| of integration time       |              | corresponds to 30 s)                                                  |  |
| Wavelength calibration    | < 0.1 m/s    | > 1000 arc lines during daytime                                       |  |
|                           |              | calibration                                                           |  |
| Instrument SRF            | < 0.3 m/s    | > 1000 arc lines during daytime                                       |  |
| measurement               |              | calibration                                                           |  |
| Opto-mechanical stability | < 0.3 m/s    | < 0.1 pixel drift during an                                           |  |
|                           |              | observation                                                           |  |
| Centring and guiding      | < 0.3 m/s    | Spatial scrambling of fibre and                                       |  |
|                           |              | CCD guiding                                                           |  |
| Background subtraction    | < 0.1 m/s    | Stability of background, dark                                         |  |
|                           |              | current, bias etc.                                                    |  |
| Total instrument noise    | < 0.6 m/s    | RMS                                                                   |  |
|                           |              |                                                                       |  |
| Source photon noise       | 0.8 m/s      | $m_{\gamma}=10.5 \text{ M6 V} (v \sin i = 5 \text{ km/s}) \text{ at}$ |  |
|                           |              | 10 pc. S/N=300 in 14 min                                              |  |
| Source radial velocity    | (0-20 m/s)   | Sources will be selected for                                          |  |
| jitter                    |              | minimum radial velocity jitter                                        |  |
| Atmospheric noise         | ~0.5 m/s     | Modelled effects of telluric jitter                                   |  |
| Total noise (1 σ)         | 1.1 m/s      | For typical M6 V star (zero                                           |  |
| Ĺ                         |              | radial velocity jitter)                                               |  |

# *Mock UKIRT survey – 100 night/yr for 5 years assuming std overheads*

| S/N:                         | 150             |     |      |
|------------------------------|-----------------|-----|------|
| Epochs :                     | 30              |     | 60   |
| $v \sin i / \mathrm{km/s}$ : | all             | <10 | < 10 |
| ~Sp. Type                    | Number of stars |     |      |
| M2.0 V                       | 70              | 70  | 45   |
| M2.5 V                       | 70              | 70  | 45   |
| M3.0 V                       | 70              | 70  | 45   |
| M4.0 V                       | 70              | 70  | 45   |
| M5.0 V                       | 70              | 70  | 45   |
| M6.0 V                       | 50              | 27  | 19   |
| M6.5 V                       | 23              | 9   | 6    |
| M8.0 V                       | 14              | 3   | 2    |
| M9.0 V                       | 5               | 1   | 0    |
| L1.0                         | 1               | 0   | 0    |
| Total                        | 443             | 390 | 207  |

### Y=11.3 J=10.7 H=10.2, S/N=150 in 1hr

### **Conclusion**

\*<5 m/s reached on Sun in 1 minute</p>
Modelling indicates 1 m/s is achievable
\* Limits probably driven by stability of stars
\* Method to detect Earth-mass planet in a habitable zone
\* Conservative design can achieve science goals

http://www.roe.ac.uk/ukatc/projects/upf/

### **Other Science**

- High-z absorption lines from rapid follow-up of GRBs
- Studies of weather, temperature, gravity and abundance for cool stars, particularly, brown dwarfs, protostars and M giants
  - \*Zeeman Doppler Imaging
  - Characterization of extrasolar planets
- \* Abundance analysis of comets
- \* Planetary weather and circulation patterns
- \*Asterioseismology
- \* Nuclear activity in nearby galaxies

## **Fourier Analysis**

#### Doppler info of spectrum

- F(I) related to df/dl.
- FT (df/dl) = k f(k) where
- spatial freq k = 2p/l
- Plot k f(k) vs k for M6V
- and v sin i = 0 km/s
- Over-plot FT (Gaussian PSF)
- for R=20k, 50k, 70k, 100k
- RESULT:
- optimum R ~ 70,000



### FT (df/dl)





RV amplitude (m/s) 0.06

1.0

### Why the infrared?



Pavlenko et al. 2006

@M6 – flux x50

### Motivation

Find terrestrial-mass exoplanets in the habitable zones of the nearest stars While transit survey detections have taken off, the radial velocity technique dominates searches of closest stars and is required for transit follow-up.

exoplanet.eu tally
Timing (7 planets)
Radial velocity (308 planets)
Transits (55 planets)
Gravitational microlensing (8 planets)
Direct imaging (11 planets)