Searching for Occultations in the WFCAM Transit Survey

Jayne Birkby (IoA) Supervisor: Simon Hodgkin (IoA)

Outline

1) Light Curves - Intrinsic Variability & Correlated Noise 2) Occultation Detection - Automated Candidate Selection 3) Candidate Assessment and Prioritisation 4) Candidate Follow-Up Strategy 5) Summary

Light Curves

• For one paw-print we observe ~20,000 stellar objects with J < 19.

Example light curve from WTS

= New season

Variability Filter (Rotation)

• We allow phase and amplitude to vary over gaps > 21 days (a season) but the period must remain fixed as rotation rate on expected to vary much on these timescales.

Jayne Birkby

Rotator Selection

Correlated (Red) Noise

Red

OGLE light curve

Pont et al. 2006 28/01/2009 RoPACS Kickoff Meeting

Correlated (Red) Noise

Input parameters i) Period 0.4 - 10 days ii) parameter that keeps a physically plausible duration to period ratio (range 0.4-1.67)

Occultation vs. Brightening

SNR vs Period

Jayne Birkby

SNR vs. J-band Magnitude

Candidates

- It took 4 days to run Occfit on ~20,000 light curves with J magnitude < 19.
- Automated cuts yield 27 candidates. 10 are false positives due to bad data on one night therefore we need to reject some frames based on DQC parameters: e.g. zero-point, seeing, ellipticity and sky brightness
- Our final sample contains **I7 transiting or EB** candidates.

Candidates

Jayne Birkby

time (Δ JD) - daily gaps removed

Candidates

WTS-3-9148

• J = 15.6 mag Depth = 0.06 Period = 0.554 days $R_p/R_* \sim 0.25$

Jayne Birkby

~33% of candidates are blended

28/01/2009 RoPACS Kickoff Meeting

К

Н

Candidate Assessment

- I) Estimate spectral type and luminosity class from optical and infrared colours e.g. WTS H & K, 2MASS JHK, SDSS...
- 2) Quantify third light contamination
- 3) Estimate radius primary and planet/secondary
- 4) Devise a method for initial classification and prioritisation of candidates for follow-up

Follow-up

- Required follow-up is based on candidate properties:
 - High res imaging to resolve objects
 - Robust period from additional light curves
 - Transit morphology (multi-wavelength)
 - Determine radius based on spectroscopy
 - Measure low precision RVs for EBs
 - Measure high precision RVs for planets

Transit depth as a function of J magnitude

28/01/2009 RoPACS Kickoff Meeting

Summary

- We have an end-to-end candidate extraction system that works successfully on the WTS. The entire process for a single pointing (from raw images to candidate selection) takes ~5 days.
- We find 17 planet/EB candidates from ~20,000 stars in one paw-print. This scales to ~550 candidates in the entire survey.
- We need to devise a simple, concise and effective scheme that prioritises candidates for follow-up.