

John Barnes

University of Hertfordshire, UK

Travis Barman & Lisa Prato (Lowell Obs.) Brad Hansen (UCLA) Hugh Jones & David Pinfield (Herts) Chris Leigh (Liverpool JMU) Bob Barber (UCL) Andrew Collier Cameron (St Andrews) James Jenkins (Santiago)

John Barnes

University of Hertfordshire, UK

Travis Barman & Lisa Prato (Lowell Obs.) Brad Hansen (UCLA) Hugh Jones & David Pinfield (Herts) Chris Leigh (Liverpool JMU) Bob Barber (UCL) Andrew Collier Cameron (St Andrews) James Jenkins (Santiago)

Direct near infrared spectroscopic planetary signal (high resolution)

- $F_p/F_* \sim 1/1,000$ in the near infrared in the 2.2 μm K band
- Extract the signal from a high resolution spectral timeseries:
- planetary signature is modeled as a phase dependent spectrum superimposed on an unvarying stellar spectrum
- Least squares deconvolution combines information from thousands of lines
- Does not require transiting system
- Contrast ratio determined
- K_{planet}, hence orbital inclination and planet or BD mass determined
- Test of model atomic/molecular linelists at high resolution
- Split data into wavebands to obtain a local SED
- Optimise the phase function fit to better constrain the energy distribution models

Deconvolution

- S/N in a single observed spectrum is typically a few hundred
- Several hundred to several thousand lines in a typical spectrum
 - Use model spectrum linelist to perform a least squares deconvolution of a mean line profile from the observed spectra after removal of stellar/telluric lines
- Boosts the S/N ratio by a factor depending on the number of lines Gain factor of several up to a few x10 gain

S/N ratios ~100s – 1000s can thus be achieved for a single spectrum, enabling search for planet signatures of similar contrast ratios

Modeling/detecting a planet

- Sinusoidal RV motion of the planet or faint secondary is modeled with model profile scaled according to orbital phase
- Since inclination is generally unknown run model for pairs of velocity amplitude, K_p , and maximum planet/star brightness, ϵ_0 , and measure improvement in χ^2 for combination of ϵ_0 vs K_p

Test significance of the result by randomising the order of spectra within each night and re-performing the search as above. By using several thousand randomised data sets, we can plot confidence levels for detected enhancements in χ^2 .

2008 Results: HD 189733b K band (enhanced CO₂)

15/06/08 & 22/06/08 - R ~ 25,000

Observed planet log $\varepsilon_0 = -3.286$ (1/1930) No planet detection 99% : log $\varepsilon_0 = -3.301$ (1/2000)

95.4% : log ε₀ = -3.441 (1/2760)

2006 data published in Barnes, Barman, Prato, Segransan, Jones, Leigh, Collier Cameron, Pinfield, 2007, MNRAS, 382, 473

• Planet is not detected at a contrast which is 1.9 times (at $2\sigma - 95.4\%$) deeper than observation shows (less sensitive than no-CO₂ result)

For Hot Jupiter atmospheres at high resolution:

 HD 189733b: We can rule out the pL atmosphere where atomic species such as Ti and V have "rained out" resulting in an atmosphere dominated by H₂O, CO & CO₂ absorption

• What are the main Model uncertainties?

- Relative line depths
- Wavelength uncertainty

T_{planet}

- Velocity fields/winds re-distribute heat → Jets, profile broadening
- Ephemeris/phasing

University

Conclusions (from Madrid talk)

- Prospects for ground based high resolution spectroscopic characterisation studies of M dwarfs looks promising
 - 42m E-ELT will give gain (over 8m tels.) of 3.6 mags for same time allocation enabling study of K~10 systems
- Low resolution: transmission and direct spectroscopy studies:
 - 6.5m JWST will enable space based precision to probe K~10 systems

University of Hertfordshare

Characterising low-mass binary systems

- Mass and chemical composition of a star are the basic properties which we wish to learn and understand: i.e. mass, radius, temperature, luminosity and their variation with time
- M dwarfs: radii too high
 - Magnetic activity: Spots lead to lower surface temperature → star increases radius to conserve radiative flux (Spruit, 1986, A&A, 166, 167)
 - Effect removed by M ~ 0.2 M_{\odot} ?

Mass-radius relationship

Stellar to planetary mass Few or no objects in the 0.001-0.1 BD mass regime where MR relationship form is determined by partially degenerate electrons

Optical surveys vs Infrared surveys

 Optical transit surveys target mostly F-K stars and turn up low mass secondaries in the M dwarf regime

(SuperWASP-N followup program PI L. Hebb, St Andrews)

- Infrared surveys targeting low mass stars might be expected to detect substellar companions
- Application of high resolution spectroscopic signature to detection and characterisation of low-mass binary secondary components

Measuring stellar masses

 Cross correlation function enables stellar mass ratio to be determined from RV curve. For eclipsing systems, inclination can be determined and hence mass of components.

$$f(m) = \frac{[m_2 \sin(i)]^3}{(m_1 + m_2)^2} = 1.0361 \times 10^{-7} (1 - e^2)^{3/2} K_1^3 P \quad M_{\odot}, \quad q = \frac{K_1}{K_2} = \frac{m_2}{m_1}$$

PAR 1082: Pair of Orion pre-main-sequence stars with masses of 0.414 and 0.406 M_{\odot} with 10% uncertainty (Stassun et al., 2008, Nature, 453. 1079) P = 4.7 d

Characterising substellar systems

- A number of *resolved* substellar systems have been imaged with spectral types estimated from low resolution spectroscopy
- Measurement of mass difficult as typically wide binary systems – may take many years or decades

John Barnes – RoPACS meeting, 23rd April 2009

Measuring stellar masses

- Short period systems are most likely to be detected by transit surveys but measuring system masses may be difficult if the secondary signature is faint (single lined binaries) – i.e. can't measure m₂, hence only f(m) measured
- e.g. Hyades: RHy 403
- **P** = 1.276 d
 - Only primary cross-correlation peak measured

RHy 403

- P = 1.276 d, circular orbit, $K_p = 40$ kms⁻¹, a sini i = 0.0047 au
- K = 11.7
- $f(m) = 0.0085 M_{bol} \sim 11 \rightarrow 600 \text{ Myr model} \rightarrow m_I \sim 0.15 \text{ M}_{\odot}$
- Lower mass limit for companion: m₂ = 0.062 M_☉
 Upper mass limit based on estimated flux limit of Reid & Mahoney observations gives m₂ = 0.095 M_☉ (flux ratio of 4:1)
 - 72% chance that i > 50° and $m_2 < 0.08 \text{ M}_{\odot}$

RHy 403: Simulation

• Take spectra for worst case scenario - i.e. Maximum contrast for $i = 90^{\circ}$

 $m_1 = 0.15 \text{ M}_{\odot}, T_1 = 3200 \text{ K}$ $m_2 = 0.062 \text{ M}_{\odot}, T2 = 2100 \text{ K}$

CRIRES K band simulation at R ~ 40,000

Shift primary and secondary spectra onto binary orbit and attenuate secondary spectrum with contrast ratio 10:1 S/N = 35

University of Hertfordshare

For Hyades age system, expect contrast ratio 18:1

- Spectral timeseries of 18 spectra
- Apply deconvolution using secondary spectrum
- Remove orbital signature of primary
- Secondary RV signature is just visible in timeseries

Phased dynamic spectrum

University of Hertfordshire

RHy 403: Recovery

- χ^2 landscape plot of contrast ratio (log ε) vs K_p
- Secondary signature is calibrated and recovered with contrast ratio log $\varepsilon = -1$ (10:1)
- 99.9% confidence contrast ratio 28:1
- 99% confidence ratio 38:1

- limits G_{1} G_{1} G_{1} G_{2} G_{1} G_{2} G_{1} G_{2} G_{2
- If non-eclipsing, spectral typing can give estimate of primary mass and therefore inclination
- For a tidally locked system such as RHy 403, with sufficient resolution, profile widths are set by sytsem geometry and enable estimate of radii

Summary

- Determination of spectroscopic parameters such as mass/mass ratio for high contrast binaries looks promising
- Good for assessing and tuning the technique as applied to high contrast planetary systems
- Current technology (CRIRES) can push to K = 12 with same confidence limits and two nights of observation
- Cross-dispersed R~50,000 will enable K ~ 13-14 for a RHy 403-like system
 - For systems with contrast ratio which is too high for conventional cross-correlation technique but lower than simulated, could probe to K ~ 15

University of Hertfordshire

UPF Update

- UKIRT Planet Finder cross-dispersed near-infrared high resolution spectrograph
- PPAN considered the statement of interest for UPF in early March (PI Hugh Jones)
 - Recommended submission of a major project proposal to the STFC