

NAHUAL:

A MID & HIGH RESOLUTION IR SPECTROGRAPH FOR A 10-M SEGMENTED TELESCOPE (GTC)

Motivations:

To extend the parameter space of planet searches (ages, masses, rotation).

Follow-up of NIR transit searches.

Very low-mass primaries (Martin et al. 2006, Blake et al. 2007, T Tauri stars (Huélamo et al. 2008), Young MS stars, Red giants

Zapatero Osorio et al. 2007, 2009)

Community interest

- 7 workshops held so far (La Gomera, Segovia, Jena, Cádiz, Miami, Fuerteventura, Sintra).
- Next workshop in Fuerteventura, 16-18 Dec 2009, http://www.reunprep-cons11-fuerteventura.com/
- About 100 different participants in those workshops
- Seed for instrument proposed for Calar Alto 3.5-m (CARMENES)
- Other similar projects in other observatories (PRVS)
- Need for high-precision RV capabilities mentioned in Exoplanet Task Force and Blue Dots reports.
- Funding collected since 2005:
- 600 Keuros from MEC
- 200 Keuros from Tautenburg
- 100 Keuros from IAC
- 40 Keuros in Ireland
- 40 Keuros from Lisbon

Observing modes

NAHUAL team driven: Single object. High stability (no moving parts). R=60,000. Wav. Range=0.9—1.8 microns. FOV=3 arcsec. CD completed.

GTC driven: Multi-object capability. R=20,000. Range=0.95—2.45 microns. FOV≈10 arcmin. CD study funded.

Long-term NIRSPEC RV data (2001-2008) of VB10 has rms of 300 m/s Zapatero Osorio, Martin, et al. 2009, A&A

Fig. 3.— NIRSPEC radial velocities of vB 10 (filled circles) folded in phase using the same orbital parameters than in Fig. 2 (*left panel*), and using slightly different orbital period, eccentricy, and argument of periapsis (*right panel*). These spectroscopic observations cannot constrain the orbital solution precisely, but they are consistent with the presence of a small body aroud vB 10. The horizontal dotted line denotes the "systemic" velocity of the pair. Note that two periods are depicted in the diagrams.

Mass of companion ≈ 6.4 Jupiters; Pravdo & Shaklan 2009

What can we do to improve the precision?

Deconvolution by F. Rodler, precision 120 m/s

Nahual project web page

Conceptual mechanical design

High stability cryostat

Collaboration between Arcetri, IAC and Lisbon

Single vessel e=40 mm (wall thickness)

SUB =8

Prisms of ZnSe

Ohara GmbH 150.00 ±1.0 mm 50.00 ±1.0 mm 40.000 euros

Satisfactory delivery to TLS

Zemax model to place in pupil (returning mirror) to consider the effects of The prisms WFE. It contains 37 zerniques (with tilt and focus removed). - There are two passes and is scaled from 0.632 to the working wavelength.

Gas cells

Gas cell development

HE

Mid-resolution gas cell spectra

Collaboration with R. Peale group (UCF)

NAHUAL SENSITIVITY

Figure by M.R. Zapatero Osorio

3 m/s ((3 sigma) in 300 s for K=9 and D = 10 m.

D=40m => K=12-14 => L and T dwarfs => lowest mass planets around the lowest mass primaries?

Semi-major axis (AU)

Summary

- Study to consider NAHUAL as mid and high-resolution nearinfrared spectrograph common-user @ GTC in 2016 approved.
- 5 years of experience and about 1 million euros of development investment as of 2009.
- NAHUAL experience is applicable to other (bigger or smaller) telescopes, such as CARMENES @ Calar Alto and the ELTs.
- Calar Alto status uncertain ...

Crazy things happen

